Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 381(6655): 330-335, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37471537

RESUMO

Past interglacial climates with smaller ice sheets offer analogs for ice sheet response to future warming and contributions to sea level rise; however, well-dated geologic records from formerly ice-free areas are rare. Here we report that subglacial sediment from the Camp Century ice core preserves direct evidence that northwestern Greenland was ice free during the Marine Isotope Stage (MIS) 11 interglacial. Luminescence dating shows that sediment just beneath the ice sheet was deposited by flowing water in an ice-free environment 416 ± 38 thousand years ago. Provenance analyses and cosmogenic nuclide data and calculations suggest the sediment was reworked from local materials and exposed at the surface <16 thousand years before deposition. Ice sheet modeling indicates that ice-free conditions at Camp Century require at least 1.4 meters of sea level equivalent contribution from the Greenland Ice Sheet.

2.
Soc Work Health Care ; 62(8-9): 302-319, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37523327

RESUMO

This paper reports findings from a qualitative study conducted on the Need for Social work interventions in the Emergency Department (ED) at a large tertiary care center in India. The emergency department is an important social work intervention point for individuals with various psychiatric, medical, and social needs who have little or no additional interaction with social services. Social workers are specially trained to understand the impact of social factors on health outcomes and provide interventions that address social barriers to improving health and accessing community resources; social workers are well prepared to provide services in the emergency department. However, limited research is available to understand the impact of psychosocial services in the emergency department. We aimed to identify areas which require integrated social work services and coordination to address the psychosocial issues within the ED. Interviews with 10 healthcare workers are analyzed thematically. Recurring themes throughout the interviews confirm the need for providing social work interventions to ensure the medical, psychological, and social care needs in the emergency department.


Assuntos
Serviço Hospitalar de Emergência , Assistentes Sociais , Humanos , Assistentes Sociais/psicologia , Serviço Social , Pessoal de Saúde , Índia
3.
Sci Adv ; 8(12): eabm4346, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35319972

RESUMO

Declining temperature has been thought to explain the abandonment of Norse settlements, southern Greenland, in the early 15th century, although limited paleoclimate evidence is available from the inner settlement region itself. Here, we reconstruct the temperature and hydroclimate history from lake sediments at a site adjacent to a former Norse farm. We find no substantial temperature changes during the settlement period but rather that the region experienced a persistent drying trend, which peaked in the 16th century. Drier climate would have notably reduced grass production, which was essential for livestock overwintering, and this drying trend is concurrent with a Norse diet shift. We conclude that increasingly dry conditions played a more important role in undermining the viability of the Eastern Settlement than minor temperature changes.

4.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33972430

RESUMO

The relative warmth of mid-to-late Pleistocene interglacials on Greenland has remained unknown, leading to debates about the regional climate forcing that caused past retreat of the Greenland Ice Sheet (GrIS). We analyze the hydrogen isotopic composition of terrestrial biomarkers in Labrador Sea sediments through interglacials of the past 600,000 y to infer millennial-scale summer warmth on southern Greenland. Here, we reconstruct exceptionally warm summers in Marine Isotope Stage (MIS) 5e, concurrent with strong Northern Hemisphere summer insolation. In contrast, "superinterglacial" MIS11 demonstrated only moderate warmth, sustained throughout a prolonged interval of elevated atmospheric carbon dioxide. Strong inferred GrIS retreat during MIS11 relative to MIS5e suggests an indirect relationship between maximum summer temperature and cumulative interglacial mass loss, indicating strong GrIS sensitivity to duration of regional warmth and elevated atmospheric carbon dioxide.

5.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33723011

RESUMO

Summer warming is driving a greening trend across the Arctic, with the potential for large-scale amplification of climate change due to vegetation-related feedbacks [Pearson et al., Nat. Clim. Chang. (3), 673-677 (2013)]. Because observational records are sparse and temporally limited, past episodes of Arctic warming can help elucidate the magnitude of vegetation response to temperature change. The Last Interglacial ([LIG], 129,000 to 116,000 y ago) was the most recent episode of Arctic warming on par with predicted 21st century temperature change [Otto-Bliesner et al., Philos. Trans. A Math. Phys. Eng. Sci. (371), 20130097 (2013) and Post et al., SciAdv (5), eaaw9883 (2019)]. However, high-latitude terrestrial records from this period are rare, so LIG vegetation distributions are incompletely known. Pollen-based vegetation reconstructions can be biased by long-distance pollen transport, further obscuring the paleoenvironmental record. Here, we present a LIG vegetation record based on ancient DNA in lake sediment and compare it with fossil pollen. Comprehensive plant community reconstructions through the last and current interglacial (the Holocene) on Baffin Island, Arctic Canada, reveal coherent climate-driven community shifts across both interglacials. Peak LIG warmth featured a ∼400-km northward range shift of dwarf birch, a key woody shrub that is again expanding northward. Greening of the High Arctic-documented here by multiple proxies-likely represented a strong positive feedback on high-latitude LIG warming. Authenticated ancient DNA from this lake sediment also extends the useful preservation window for the technique and highlights the utility of combining traditional and molecular approaches for gleaning paleoenvironmental insights to better anticipate a warmer future.


Assuntos
Mudança Climática , DNA Antigo/análise , DNA de Plantas/análise , Dispersão Vegetal , Pólen/genética , Regiões Árticas , Fósseis , Sedimentos Geológicos/análise , Lagos , Paleontologia
6.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33723012

RESUMO

Understanding the history of the Greenland Ice Sheet (GrIS) is critical for determining its sensitivity to warming and contribution to sea level; however, that history is poorly known before the last interglacial. Most knowledge comes from interpretation of marine sediment, an indirect record of past ice-sheet extent and behavior. Subglacial sediment and rock, retrieved at the base of ice cores, provide terrestrial evidence for GrIS behavior during the Pleistocene. Here, we use multiple methods to determine GrIS history from subglacial sediment at the base of the Camp Century ice core collected in 1966. This material contains a stratigraphic record of glaciation and vegetation in northwestern Greenland spanning the Pleistocene. Enriched stable isotopes of pore-ice suggest precipitation at lower elevations implying ice-sheet absence. Plant macrofossils and biomarkers in the sediment indicate that paleo-ecosystems from previous interglacial periods are preserved beneath the GrIS. Cosmogenic 26Al/10Be and luminescence data bracket the burial of the lower-most sediment between <3.2 ± 0.4 Ma and >0.7 to 1.4 Ma. In the upper-most sediment, cosmogenic 26Al/10Be data require exposure within the last 1.0 ± 0.1 My. The unique subglacial sedimentary record from Camp Century documents at least two episodes of ice-free, vegetated conditions, each followed by glaciation. The lower sediment derives from an Early Pleistocene GrIS advance. 26Al/10Be ratios in the upper-most sediment match those in subglacial bedrock from central Greenland, suggesting similar ice-cover histories across the GrIS. We conclude that the GrIS persisted through much of the Pleistocene but melted and reformed at least once since 1.1 Ma.


Assuntos
Sedimentos Geológicos/análise , Camada de Gelo/química , Dispersão Vegetal , Alumínio/análise , Berílio/análise , Fósseis , Congelamento , Sedimentos Geológicos/química , Groenlândia , Radioisótopos/análise
7.
Nature ; 586(7827): 70-74, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32999481

RESUMO

The Greenland Ice Sheet (GIS) is losing mass at a high rate1. Given the short-term nature of the observational record, it is difficult to assess the historical importance of this mass-loss trend. Unlike records of greenhouse gas concentrations and global temperature, in which observations have been merged with palaeoclimate datasets, there are no comparably long records for rates of GIS mass change. Here we reveal unprecedented mass loss from the GIS this century, by placing contemporary and future rates of GIS mass loss within the context of the natural variability over the past 12,000 years. We force a high-resolution ice-sheet model with an ensemble of climate histories constrained by ice-core data2. Our simulation domain covers southwestern Greenland, the mass change of which is dominated by surface mass balance. The results agree favourably with an independent chronology of the history of the GIS margin3,4. The largest pre-industrial rates of mass loss (up to 6,000 billion tonnes per century) occurred in the early Holocene, and were similar to the contemporary (AD 2000-2018) rate of around 6,100 billion tonnes per century5. Simulations of future mass loss from southwestern GIS, based on Representative Concentration Pathway (RCP) scenarios corresponding to low (RCP2.6) and high (RCP8.5) greenhouse gas concentration trajectories6, predict mass loss of between 8,800 and 35,900 billion tonnes over the twenty-first century. These rates of GIS mass loss exceed the maximum rates over the past 12,000 years. Because rates of mass loss from the southwestern GIS scale linearly5 with the GIS as a whole, our results indicate, with high confidence, that the rate of mass loss from the GIS will exceed Holocene rates this century.

8.
Proc Natl Acad Sci U S A ; 106(44): 18443-6, 2009 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-19841265

RESUMO

The Arctic is currently undergoing dramatic environmental transformations, but it remains largely unknown how these changes compare with long-term natural variability. Here we present a lake sediment sequence from the Canadian Arctic that records warm periods of the past 200,000 years, including the 20th century. This record provides a perspective on recent changes in the Arctic and predates by approximately 80,000 years the oldest stratigraphically intact ice core recovered from the Greenland Ice Sheet. The early Holocene and the warmest part of the Last Interglacial (Marine Isotope Stage or MIS 5e) were the only periods of the past 200,000 years with summer temperatures comparable to or exceeding today's at this site. Paleoecological and geochemical data indicate that the past three interglacial periods were characterized by similar trajectories in temperature, lake biology, and lakewater pH, all of which tracked orbitally-driven solar insolation. In recent decades, however, the study site has deviated from this recurring natural pattern and has entered an environmental regime that is unique within the past 200 millennia.


Assuntos
Água Doce/análise , Regiões Árticas , Biologia de Ecossistemas de Água Doce , Geografia , Sedimentos Geológicos/análise , História Antiga , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...