Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Front Nutr ; 9: 898782, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35774538

RESUMO

Insulin secretion following ingestion of a carbohydrate load affects a multitude of metabolic pathways that simultaneously change direction and quantity of interorgan fluxes of sugars, lipids and amino acids. In the present study, we aimed at identifying markers associated with differential responses to an OGTT a population of healthy adults. By use of three metabolite profiling platforms, we assessed these postprandial responses of a total of 202 metabolites in plasma of 72 healthy volunteers undergoing comprehensive phenotyping and of which half enrolled into a weight-loss program over a three-month period. A standard oral glucose tolerance test (OGTT) served as dietary challenge test to identify changes in postprandial metabolite profiles. Despite classified as healthy according to WHO criteria, two discrete clusters (A and B) were identified based on the postprandial glucose profiles with a balanced distribution of volunteers based on gender and other measures. Cluster A individuals displayed 26% higher postprandial glucose levels, delayed glucose clearance and increased fasting plasma concentrations of more than 20 known biomarkers of insulin resistance and diabetes previously identified in large cohort studies. The volunteers identified by canonical postprandial responses that form cluster A may be called pre-pre-diabetics and defined as "at risk" for development of insulin resistance. Moreover, postprandial changes in selected fatty acids and complex lipids, bile acids, amino acids, acylcarnitines and sugars like mannose revealed marked differences in the responses seen in cluster A and cluster B individuals that sustained over the entire challenge test period of 240 min. Almost all metabolites, including glucose and insulin, returned to baseline values at the end of the test (at 240 min), except a variety of amino acids and here those that have been linked to diabetes development. Analysis of the corresponding metabolite profile in a fasting blood sample may therefore allow for early identification of these subjects at risk for insulin resistance without the need to undergo an OGTT.

2.
Front Nutr ; 8: 588466, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937302

RESUMO

Acetate is one of the main short chain fatty acids produced in the colon when fermentable carbohydrates are digested. It has been shown to affect normal metabolism, modulating mitochondrial function, and fatty acid oxidation. Currently, there is no clear consensus regarding the effects of acetate on tumorigenesis and cancer metabolism. Here, we investigate the metabolic effects of acetate on colon cancer. HT29 and HCT116 colon cancer cell lines were treated with acetate and its effect on mitochondrial proliferation, reactive oxygen species, density, permeability transition pore, cellular bioenergetics, gene expression of acetyl-CoA synthetase 1 (ACSS1) and 2 (ACSS2), and lipid levels were investigated. Acetate was found to reduce proliferation of both cell lines under normoxia as well as reducing glycolysis; it was also found to increase both oxygen consumption and ROS levels. Cell death observed was independent of ACSS1/2 expression. Under hypoxic conditions, reduced proliferation was maintained in the HT29 cell line but no longer observed in the HCT116 cell line. ACSS2 expression together with cellular lipid levels was increased in both cell lines under hypoxia which may partly protect cells from the anti-proliferative effects of reversed Warburg effect caused by acetate. The findings from this study suggest that effect of acetate on proliferation is a consequence of its impact on mitochondrial metabolism and during normoxia is independent of ACCS1/2 expression.

3.
Front Mol Biosci ; 8: 630107, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34046425

RESUMO

The cannabinoid, cannabidiol (CBD), is part of the plant's natural defense system that when given to animals has many useful medicinal properties, including activity against cancer cells, modulation of the immune system, and efficacy in epilepsy. Although there is no consensus on its precise mode of action as it affects many cellular targets, CBD does appear to influence mitochondrial function. This would suggest that there is a cross-kingdom ability to modulate stress resistance systems that enhance homeostasis. As NAD(P)H autofluorescence can be used as both a metabolic sensor and mitochondrial imaging modality, we assessed the potential of this technique to study the in vitro effects of CBD using 2-photon excitation and fluorescence lifetime imaging microscopy (2P-FLIM) of NAD(P)H against more traditional markers of mitochondrial morphology and cellular stress in MCF7 breast cancer cells. 2P-FLIM analysis revealed that the addition of CBD induced a dose-dependent decrease in bound NAD(P)H, with 20 µM treatments significantly decreased the contribution of bound NAD(P)H by 14.6% relative to the control (p < 0.001). CBD also increased mitochondrial concentrations of reactive oxygen species (ROS) (160 ± 53 vs. 97.6 ± 4.8%, 20 µM CBD vs. control, respectively, p < 0.001) and Ca2+ (187 ± 78 vs. 105 ± 10%, 20 µM CBD vs. the control, respectively, p < 0.001); this was associated with a significantly decreased mitochondrial branch length and increased fission. These are all suggestive of mitochondrial stress. Our results support the use of NAD(P)H autofluorescence as an investigative tool and provide further evidence that CBD can modulate mitochondrial function and morphology in a dose-dependent manner, with clear evidence of it inducing oxidative stress at higher concentrations. This continues to support emerging data in the literature and may provide further insight into its overall mode of action, not only in cancer, but potentially its function in the plant and why it can act as a medicine.

4.
Hepatol Res ; 40(4): 399-406, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20236356

RESUMO

AIM: The increasing prevalence of fatty liver disease requires routine assessment methods. Proton magnetic resonance spectroscopy ((1)H MRS) is increasingly used for steatosis measurement, but due to cost, is unlikely to become a widely-used screening tool. Ultrasound is cheaper and more widely available, although subject to observer variability. Our aim was to determine the sensitivity and specificity of ultrasound against (1)H MRS, using MRS as a gold standard, for the detection and quantification of hepatic fat content. METHODS: Fifty adults participated (43 men, seven women) in this study. Hepatic steatosis was assessed by ultrasound and (1)H MRS. Images were graded by two independent radiologists to classify severity and distribution of liver fat. RESULTS: Ultrasound detected liver fat infiltration in 82% of cases measurable by (1)H MRS, while liver fat was detectable in 44% of cases graded absent by ultrasound. Ultrasound grading was subjective, with the radiologists in agreement in 53% of cases (kappa = 0.39, P = 0.002). Considerable overlap in intrahepatocellular lipid content was observed between different grades: absent (0.0-1.58%), mild (2.2-16.2%), moderate (4.9-26.7%) and severe (8.1-76.8%) steatosis. Ultrasound could not detect liver fat levels below 2% as measured by (1)H MRS Conclusion: Ultrasound is less sensitive than (1)H MRS in detecting very low levels of liver fat content, but is sensitive to fatty infiltration greater than 2%. There is a tendency of higher ultrasound grades to correlate with higher degrees of fatty infiltration, although some overlap exists. Our findings are still consistent with ultrasound being useful as a low cost screening tool.

5.
Pediatr Res ; 55(3): 437-41, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14681496

RESUMO

Regional differences in adipose tissue distribution are associated with differences in adipocyte metabolism and obesity-related morbidities. Intrauterine growth restriction appears to place individuals at greater risk of obesity associated morbidities in later life. Despite this, little is known regarding the quantity and distribution of adipose tissue in infants during early development. The aim of this study was to compare total and regional adipose tissue content in appropriate-for-gestational-age (AGA) and growth-restricted (GR) newborn infants born at or near term. Whole body adipose tissue magnetic resonance imaging (MRI) was performed as soon as possible after birth. Total and regional adipose tissue depots were quantified. A total of 35 infants (10 GR; 25 AGA) were studied. Mean (SD) total percentage adipose tissue was lower in GR infants than AGA infants [GR: 17.70% (2.17); AGA: 23.40% (3.85); p = 0.003]. This difference arose from differences in subcutaneous adipose tissue mass [mean (SD) percentage subcutaneous adipose tissue mass, GR: 16.13% (2.20); AGA: 21.44% (3.81); p = 0.004], but not intra-abdominal adipose tissue mass [mean (SD) percentage intra-abdominal adipose tissue, GR: 0.42% (0.22); AGA: 0.61% (0.31); p = 0.45]. In contrast to subcutaneous adipose tissue, intra-abdominal adipose tissue is not reduced in infants with intrauterine growth restriction. This suggests that subcutaneous and intra-abdominal adipose tissue compartments may be under different regulatory control during intrauterine life.


Assuntos
Tecido Adiposo , Feminino , Retardo do Crescimento Fetal , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA