Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 50(49): 10732-42, 2011 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-22044167

RESUMO

Understanding the roles of noncovalent interactions within the enzyme molecule and between enzyme and substrate or inhibitor is an essential goal of the investigation of active center chemistry and catalytic mechanism. Studies on members of the papain family of cysteine proteinases, particularly papain (EC 3.4.22.2) itself, continue to contribute to this goal. The historic role of the catalytic site Cys/His ion pair now needs to be understood within the context of multiple dynamic phenomena. Movement of Trp177 may be necessary to expose His159 to solvent with consequent decrease in its degree of electrostatic solvation of (Cys25)-S(-). Here we report an investigation of this possibility using computer modeling of quasi-transition states and pH-dependent kinetics using 3,3'-dipyridazinyl disulfide, its n-propyl and phenyl derivatives, and 4,4'-dipyrimidyl disulfide as reactivity probes that differ in the location of potential hydrogen-bonding acceptor atoms. Those interactions that influence ion pair geometry and thereby catalytic competence, including by transmission of the modulatory effect of a remote ionization with pK(a) 4, were identified. A key result is the correlation between the kinetic influence of the modulatory trigger of pK(a) 4 and disruption of the hydrogen bond donated by the indole N-H of Trp177, the hydrophobic shield of the initial "intimate" ion pair. This hydrogen bond is accepted by the amide O of Gln19-a component of the oxyanion hole that binds the tetrahedral species formed from the substrate during the catalytic act. The disruption would be expected to contribute to the mobility of Trp177 and possibly to the effectiveness of the binding of the developing oxyanion.


Assuntos
Papaína/química , Papaína/metabolismo , Domínio Catalítico , Dissulfetos/química , Histidina/química , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Pirimidinas/química , Triptofano
2.
Biochemistry ; 47(7): 2025-35, 2008 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-18225918

RESUMO

Studies on papain (EC 3.4.22.2), the most thoroughly investigated member of the cysteine proteinase superfamily, have contributed substantially to our understanding of the roles of noncovalent interactions in enzyme active center chemistry. Previously, we reported evidence that the long-held view that catalytic competence develops synchronously with formation of the catalytic site (Cys25)-S-/(His159)-Im+H ion pair is incorrect and that conformational rearrangement is necessary for each of the partners to play its role in catalysis. A decrease in the level of mutual solvation of the partners of the noncatalytic "intimate" ion pair should release the nucleophilic character of (Cys25)-S- and allow association of (His159)-Im+H with the leaving group of a substrate to provide its general acid-catalyzed elimination. Hypotheses by which this could be achieved involve electrostatic modulation of the ion pair and perturbation of its hydrophobic shielding from solvent by Trp177. The potential electrostatic modulator closest to the catalytic site is Asp158, the mutation of which to Ala substantially decreases catalytic activity. Here we report an investigation of these hypotheses by a combination of computer modeling and stopped-flow pH-dependent kinetic studies using a new series of cationic aminoalkyl 2-pyridyl disulfide time-dependent inhibitors as reactivity probes. These probes 2-4 (n = 2-4), which exist as equilibrium mixtures of H3N+-[CH2]n-S-S-2-pyridyl+H and H3N+-[CH2]n-S-S-2-pyridyl which predominate in acidic and weakly alkaline media, respectively, were shown by modeling and kinetic analysis to bind with various degrees of effectiveness near Asp158 and in some cases also near Trp177. Kinetic analysis of the reactions of 2-4 and of the reaction of CH3-[CH2]2-S-S-2-pyridyl+H <==>CH3-[CH2]2-S-S-2-pyridyl 1 and normal mode calculations lead to the conclusion that Asp158 is not involved in the generation of nucleophilic character in the ion pair and demonstrates a key role for Trp177.


Assuntos
Ácido Aspártico/química , Cisteína/química , Histidina/química , Papaína/química , Triptofano/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Espectrometria de Massas por Ionização por Electrospray , Eletricidade Estática
3.
Biochem J ; 396(1): 17-21, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-16445383

RESUMO

The temperature-dependences of the second-order rate constants (k) of the reactions of the catalytic site thiol groups of two cysteine peptidases papain (EC 3.4.22.2) and actinidin (EC 3.4.22.14) with a series of seven 2-pyridyl disulphide reactivity probes (R-S-S-2-Py, in which R provides variation in recognition features) were determined at pH 6.7 at temperatures in the range 4-30 degrees C by stopped-flow methodology and were used to calculate values of DeltaS++, DeltaH++ and DeltaG++. The marked changes in DeltaS++ from negative to positive in the papain reactions consequent on provision of increase in the opportunities for key non-covalent recognition interactions may implicate microsite desolvation in binding site-catalytic site signalling to provide a catalytically relevant transition state. The substantially different behaviour of actinidin including apparent masking of changes in DeltaH++ by an endothermic conformational change suggests a difference in mechanism involving kinetically significant conformational change.


Assuntos
Cisteína Endopeptidases/metabolismo , Papaína/metabolismo , Catálise , Domínio Catalítico , Cisteína Endopeptidases/química , Dissulfetos/química , Dissulfetos/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Papaína/química , Conformação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo , Temperatura
4.
Biochem J ; 381(Pt 1): 125-30, 2004 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15053743

RESUMO

The substrate selectivities of an anti-phosphonate and an anti-phosphate kinetically homogeneous polyclonal catalytic antibody preparation and two hydrolytic enzymes were compared by using hapten-analogous and truncated carbonate and ester substrates each containing a 4-nitrophenolate leaving group. Syntheses of the truncated substrates devoid of recognition features in the non-leaving group parts of the substrates are reported. The relatively high kinetic selectivity of the more active anti-phosphonate antibody preparation is considered to depend on a relatively rigid catalytic site with substantial reaction centre specificity together with other important recognition interactions with the extended non-leaving group part of the substrate. In contrast, the less catalytically active, more flexible anti-phosphate antibody exhibits much lower kinetic selectivity for the substrate reaction centre comparable with that of the hydrolytic enzymes with activity much less dependent on recognition interactions with the non-leaving group part of the substrate. The ways in which haptenic flexibility and IgG architecture might contribute to the differential kinetic selectivities are indicated.


Assuntos
Anticorpos Catalíticos/química , Anticorpos Catalíticos/metabolismo , Domínio Catalítico , Organofosfonatos/imunologia , Fosfatos/imunologia , Animais , Afinidade de Anticorpos , Reações Antígeno-Anticorpo , Sítios de Ligação de Anticorpos , Bovinos , Quimotripsina/metabolismo , Esterases/metabolismo , Hidrolases/metabolismo , Hidrólise , Fígado/enzimologia , Modelos Moleculares , Organofosfonatos/síntese química , Pâncreas/enzimologia , Fosfatos/síntese química , Especificidade por Substrato , Suínos , Vacinas Sintéticas/química , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/metabolismo
5.
Biochem J ; 378(Pt 2): 699-703, 2004 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-14640975

RESUMO

The effects of increasing the content of the aprotic dipolar organic co-solvent acetonitrile on the observed first-order rate constant (k(obs)) of the pre-steady state acylation phases of the hydrolysis of N-acetyl-Phe-Gly methyl thionester catalysed by the cysteine proteinase variants actinidin and papain in sodium acetate buffer, pH 5.3, were investigated by stopped-flow spectral analysis. With low acetonitrile content, plots of k(obs) against [S]0 for the actinidin reaction are linear with an ordinate intercept of magnitude consistent with a five-step mechanism involving a post-acylation conformational change. Increasing the acetonitrile content results in marked deviations of the plots from linearity with a rate minimum around [S]0=150 microM. The unusual negative dependence of k(obs) on [S]0 in the range 25-150 microM is characteristic of a rate-determining isomerization of the free enzyme before substrate binding, additional to the five-step mechanism. There was no evidence for this phenomenon nor for the post-acylation conformational change in the analogous reaction with papain. For this enzyme, however, acetonitrile acts as an inhibitor with approximately uncompetitive characteristics. Possible mechanistic consequences of the differential solvent-perturbed kinetics are indicated. The free enzyme isomerization of actinidin may provide an explanation for the marked difference in sensitivity between this enzyme and papain of binding site-catalytic site signalling in reactions of substrate-derived 2-pyridyl disulphide reactivity probes.


Assuntos
Acetonitrilas/química , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Solventes/química , Acilação , Catálise , Isomerismo , Cinética , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Papaína/metabolismo
6.
Biochem J ; 376(Pt 3): 813-21, 2003 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-12946271

RESUMO

To investigate the hypothesis that decreased hapten flexibility may lead to increased catalytic antibody activity, we used two closely related immunogens differing only in the flexibility of the atomic framework around the structural motif of the haptens, analogous to the reaction centre of the corresponding substrates. Identical leaving-group determinants in the haptens and identical leaving groups in the substrates removed the ambiguity inherent in some data reported in the literature. Anti-phosphate and anti-phosphonate kinetically homogeneous polyclonal catalytic antibody preparations were compared by using carbonate and ester substrates respectively, each containing a 4-nitrophenolate leaving group. Synthetic routes to a new phosphonate hapten and new ester substrate were developed. The kinetic advantage of the more rigid anti-phosphonate/ester system was demonstrated at pH 8.0 by a 13-fold advantage in k(cat)/k(non-cat) and a 100-fold advantage in the proficiency constant, k(cat)/k (non-cat) x K(m). Despite these differences, the pH-dependences of the kinetic and binding characteristics and the results of chemical modification studies suggest closely similar catalytic mechanisms. The possible origin of the kinetic advantage of the more rigid hapten/substrate system is discussed.


Assuntos
Anticorpos Catalíticos/metabolismo , Haptenos/química , Haptenos/metabolismo , Anticorpos Catalíticos/química , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Modelos Químicos , Movimento (Física) , Organofosfonatos/química , Fosfatos/química
7.
Biochem J ; 372(Pt 3): 735-46, 2003 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-12643810

RESUMO

The acylation and deacylation stages of the hydrolysis of N -acetyl-Phe-Gly methyl thionoester catalysed by papain and actinidin were investigated by stopped-flow spectral analysis. Differences in the forms of pH-dependence of the steady-state and pre-steady-state kinetic parameters support the hypothesis that, whereas for papain, in accord with the traditional view, the rate-determining step is the base-catalysed reaction of the acyl-enzyme intermediate with water, for actinidin it is a post-acylation conformational change required to permit release of the alcohol product and its replacement in the catalytic site by the key water molecule. Possible assignments of the kinetically influential p K (a) values, guided by the results of modelling, including electrostatic-potential calculations, and of the mechanistic roles of the ionizing groups, are discussed. It is concluded that Asp(161) is the source of a key electrostatic modulator (p K (a) 5.0+/-0.1) in actinidin, analogous to Asp(158) in papain, whose influence is not detected kinetically; it is always in the 'on' state because of its low p K (a) value (2.8+/-0.06).


Assuntos
Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Papaína/química , Papaína/metabolismo , Acilação , Ácido Aspártico/química , Catálise , Domínio Catalítico , Ésteres/química , Ésteres/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Modelos Moleculares , Conformação Proteica , Análise de Regressão , Espectrometria de Fluorescência/métodos , Eletricidade Estática , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA