Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
bioRxiv ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38712276

RESUMO

Dual leucine-zipper kinase (DLK) drives acute and chronic forms of neurodegeneration, suggesting that inhibiting DLK signaling could ameliorate diverse neuropathological conditions. However, direct inhibition of DLK's kinase domain in human patients and conditional knockout of DLK in mice both cause unintended side effects, including elevated plasma neurofilament levels, indicative of neuronal cytoskeletal disruption. Indeed, we found that a DLK kinase domain inhibitor acutely disrupted the axonal cytoskeleton and caused vesicle aggregation in cultured dorsal root ganglion (DRG) neurons, further cautioning against this therapeutic strategy. In seeking a more precise intervention, we found that retrograde (axon-to-soma) pro-degenerative signaling requires acute, axonal palmitoylation of DLK and hypothesized that modulating this post-translational modification might be more specifically neuroprotective than cell-wide DLK inhibition. To address this possibility, we screened >28,000 compounds using a high-content imaging assay that quantitatively evaluates DLK's palmitoylation-dependent subcellular localization. Of the 33 hits that significantly altered DLK localization in non-neuronal cells, several reduced DLK retrograde signaling and protected cultured DRG neurons from DLK-dependent neurodegeneration. Mechanistically, the two most neuroprotective compounds selectively prevent stimulus-dependent palmitoylation of axonal pools of DLK, a process crucial for DLK's recruitment to axonal vesicles. In contrast, these compounds minimally impact DLK localization and signaling in healthy neurons and avoid the cytoskeletal disruption associated with direct DLK inhibition. Importantly, our hit compounds also reduce pro-degenerative retrograde signaling in vivo, suggesting that modulating DLK's palmitoylation-dependent localization could be a novel neuroprotective strategy.

2.
J Biol Chem ; 299(8): 104965, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37356718

RESUMO

Janus Kinase-1 (JAK1) plays key roles during neurodevelopment and following neuronal injury, while activatory JAK1 mutations are linked to leukemia. In mice, Jak1 genetic deletion results in perinatal lethality, suggesting non-redundant roles and/or regulation of JAK1 for which other JAKs cannot compensate. Proteomic studies reveal that JAK1 is more likely palmitoylated compared to other JAKs, implicating palmitoylation as a possible JAK1-specific regulatory mechanism. However, the importance of palmitoylation for JAK1 signaling has not been addressed. Here, we report that JAK1 is palmitoylated in transfected HEK293T cells and endogenously in cultured Dorsal Root Ganglion (DRG) neurons. We further use comprehensive screening in transfected non-neuronal cells and shRNA-mediated knockdown in DRG neurons to identify the related enzymes ZDHHC3 and ZDHHC7 as dominant protein acyltransferases (PATs) for JAK1. Surprisingly, we found palmitoylation minimally affects JAK1 localization in neurons, but is critical for JAK1's kinase activity in cells and even in vitro. We propose this requirement is likely because palmitoylation facilitates transphosphorylation of key sites in JAK1's activation loop, a possibility consistent with structural models of JAK1. Importantly, we demonstrate a leukemia-associated JAK1 mutation overrides the palmitoylation-dependence of JAK1 activity, potentially explaining why this mutation is oncogenic. Finally, we show that JAK1 palmitoylation is important for neuropoietic cytokine-dependent signaling and neuronal survival and that combined Zdhhc3/7 loss phenocopies loss of palmitoyl-JAK1. These findings provide new insights into the control of JAK signaling in both physiological and pathological contexts.


Assuntos
Citocinas , Lipoilação , Neurônios , Transdução de Sinais , Animais , Feminino , Humanos , Camundongos , Gravidez , Citocinas/metabolismo , Gânglios Espinais/metabolismo , Células HEK293 , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Proteômica , Sobrevivência Celular
3.
Front Mol Neurosci ; 16: 1144066, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969554

RESUMO

Introduction: AnkG, encoded by the ANK3 gene, is a multifunctional scaffold protein with complex isoform expression: the 480 and 270 kDa isoforms have roles at the axon initial segment and node of Ranvier, whereas the 190 kDa isoform (AnkG-190) has an emerging role in the dendritic shaft and spine heads. All isoforms of AnkG undergo palmitoylation, a post-translational modification regulating protein attachment to lipid membranes. However, palmitoylation of AnkG-190 has not been investigated in dendritic spines. The ANK3 gene and altered expression of AnkG proteins are associated with a variety of neuropsychiatric and neurodevelopmental disorders including bipolar disorder and are implicated in the lithium response, a commonly used mood stabilizer for bipolar disorder patients, although the precise mechanisms involved are unknown. Result: Here, we showed that Cys70 palmitoylation stabilizes the localization of AnkG-190 in spine heads and at dendritic plasma membrane nanodomains. Mutation of Cys70 impairs AnkG-190 function in dendritic spines and alters PSD-95 scaffolding. Interestingly, we find that lithium reduces AnkG-190 palmitoylation thereby increasing its mobility in dendritic spines. Finally, we demonstrate that the palmitoyl acyl transferase ZDHHC8, but not ZDHHC5, increases AnkG-190 stability in spine heads and is inhibited by lithium. Discussion: Together, our data reveal that palmitoylation is critical for AnkG-190 localization and function and a potential ZDHHC8/AnkG-190 mechanism linking AnkG-190 mobility to the neuronal effects of lithium.

4.
Sci Signal ; 15(727): eabh2674, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35349303

RESUMO

Dual leucine-zipper kinase (DLK; a MAP3K) mediates neuronal responses to diverse injuries and insults through the c-Jun N-terminal kinase (JNK) family of mitogen-activated protein kinases (MAPKs). Here, we identified two ways through which DLK is coupled to the neural-specific isoform JNK3 to control prodegenerative signaling. JNK3 catalyzed positive feedback phosphorylation of DLK that further activated DLK and locked the DLK-JNK3 module in a highly active state. Neither homologous MAP3Ks nor a homologous MAPK could support this positive feedback loop. Unlike the related JNK1 isoform JNK2 and JNK3 promote prodegenerative axon-to-soma signaling and were endogenously palmitoylated. Moreover, palmitoylation targeted both DLK and JNK3 to the same axonal vesicles, and JNK3 palmitoylation was essential for axonal retrograde signaling in response to optic nerve crush injury in vivo. These findings provide previously unappreciated insights into DLK-JNK signaling relevant to neuropathological conditions and answer long-standing questions regarding the selective prodegenerative roles of JNK2 and JNK3.


Assuntos
Axônios , Lipoilação , Axônios/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Neurônios/metabolismo , Transdução de Sinais
5.
Nat Commun ; 12(1): 3845, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158506

RESUMO

Atr is a serine/threonine kinase, known to sense single-stranded DNA breaks and activate the DNA damage checkpoint by phosphorylating Chek1, which inhibits Cdc25, causing cell cycle arrest. This pathway has not been implicated in neuroregeneration. We show that in Drosophila sensory neurons removing Atr or Chek1, or overexpressing Cdc25 promotes regeneration, whereas Atr or Chek1 overexpression, or Cdc25 knockdown impedes regeneration. Inhibiting the Atr-associated checkpoint complex in neurons promotes regeneration and improves synapse/behavioral recovery after CNS injury. Independent of DNA damage, Atr responds to the mechanical stimulus elicited during regeneration, via the mechanosensitive ion channel Piezo and its downstream NO signaling. Sensory neuron-specific knockout of Atr in adult mice, or pharmacological inhibition of Atr-Chek1 in mammalian neurons in vitro and in flies in vivo enhances regeneration. Our findings reveal the Piezo-Atr-Chek1-Cdc25 axis as an evolutionarily conserved inhibitory mechanism for regeneration, and identify potential therapeutic targets for treating nervous system trauma.


Assuntos
Axônios/metabolismo , Quinase 1 do Ponto de Checagem/genética , Canais Iônicos/genética , Regeneração Nervosa/genética , Animais , Animais Geneticamente Modificados , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinase 1 do Ponto de Checagem/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células HEK293 , Humanos , Canais Iônicos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genética
6.
Br Dent J ; 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883704

RESUMO

Aim The use of tier 2 practitioners has been suggested as an intermediate tier in the NHS workforce completing cases of moderate difficulty previously referred to secondary care. Provision of such services varies depending on speciality and local commissioning priorities. This service evaluation investigated reasons for and outcomes of endodontic referrals to an NHS tier 2 service in Powys, Wales.Methods A sample of endodontic referrals was analysed with reasons for referral, referral outcome, requests for consultant support and patient demographic data recorded producing results with frequencies and percentage distributions.Results Of 401 referrals evaluated, common reasons for referral were management of post-treatment disease (56.4%) followed by inability to locate or negotiate root canals (26.9%). Mandibular molar teeth were the most frequently referred. Additionally, 44.1% of patients referred went on to receive treatment. Consultant advice and/or treatment was required in the management of 3.5% of referrals, most frequently relating to referral of traumatic dental injuries, root resorption and immature apices.Conclusions Results demonstrate tier 2 practitioners can effectively manage and treat the majority of NHS endodontic referrals. Remote consultant advice is effective in supporting tier 2 practitioners in the management of complex presentation, allowing effective treatment delivery.

7.
Transl Psychiatry ; 11(1): 65, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462194

RESUMO

Novelty-seeking behaviors and impulsivity are personality traits associated with several psychiatric illnesses including attention deficits hyperactivity disorders. The underlying neural mechanisms remain poorly understood. We produced and characterized a line of knockout mice for zdhhc15, which encodes a neural palmitoyltransferase. Genetic defects of zdhhc15 were implicated in intellectual disability and behavioral anomalies in humans. Zdhhc15-KO mice showed normal spatial learning and working memory but exhibited a significant increase in novelty-induced locomotion in open field. Striatal dopamine content was reduced but extracellular dopamine levels were increased during the habituation phase to a novel environment. Administration of amphetamine and methylphenidate resulted in a significant increase in locomotion and extracellular dopamine levels in the ventral striatum of mutant mice compared to controls. Number and projections of dopaminergic neurons in the nigrostriatal and mesolimbic pathways were normal. No significant change in the basal palmitoylation of known ZDHHC15 substrates including DAT was detected in striatum of zdhhc15 KO mice using an acyl-biotin exchange assay. These results support that a transient, reversible, and novelty-induced elevation of extracellular dopamine in ventral striatum contributes to novelty-seeking behaviors in rodents and implicate ZDHHC15-mediated palmitoylation as a novel regulatory mechanism of dopamine in the striatum.


Assuntos
Anfetamina , Dopamina , Anfetamina/farmacologia , Animais , Corpo Estriado/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Locomoção , Camundongos , Camundongos Knockout
8.
Br J Sociol ; 72(3): 693-706, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33368162

RESUMO

While disability has historically been depicted in problematic ways in television, film, and print media, more balanced and progressive cultural representations are arguably emerging. However, few studies address how disabled people and their families (e.g., parents) encounter, and make sense of, media configurations ostensibly designed to promote a more positive and visible image of living with disability. Drawing upon interviews with parents of children with Down's syndrome in the United Kingdom, I sketch out how they feel about depictions that, arguably, depart from hurtful historical narratives of disability as tragic and pitiable. Parents praise, and mostly embrace, recent portrayals of people with Down's syndrome in media outputs. At the same time, they raise concerns around tokenism, stereotyping, focusing upon "exceptional" people, and fueling sanitized accounts which deny, or at least obscure, the harsh lived realities for many parents of disabled children. I conclude by arguing that while parents largely applaud and welcome positive public narratives, they also fear that such representations threaten to gloss over the pervasive mistreatment, disregard, and disenfranchisement of disabled people and their families.


Assuntos
Síndrome de Down , Meios de Comunicação de Massa , Estereotipagem , Criança , Medo , Humanos , Pais
9.
Cell Rep ; 33(7): 108365, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33207199

RESUMO

After optic nerve crush (ONC), the cell bodies and distal axons of most retinal ganglion cells (RGCs) degenerate. RGC somal and distal axon degenerations were previously thought to be controlled by two parallel pathways, involving activation of the kinase dual leucine-zipper kinase (DLK) and loss of the axon survival factor nicotinamide mononucleotide adenylyltransferase-2 (NMNAT2), respectively. Here, we report that palmitoylation of both DLK and NMNAT2 by the palmitoyl acyltransferase ZDHHC17 couples these signals. ZDHHC17-dependent palmitoylation enables DLK-dependent somal degeneration after ONC and also ensures NMNAT-dependent distal axon integrity in healthy optic nerves. We provide evidence that ZDHHC17 also controls survival-versus-degeneration decisions in dorsal root ganglion (DRG) neurons, and we identify conserved motifs in NMNAT2 and DLK that govern their ZDHHC17-dependent regulation. These findings suggest that the control of somal and distal axon integrity should be considered as a single, holistic process, mediated by the concerted action of two palmitoylation-dependent pathways.


Assuntos
Aciltransferases/metabolismo , Axônios/metabolismo , Células Ganglionares da Retina/metabolismo , Aciltransferases/fisiologia , Animais , Axônios/fisiologia , Caenorhabditis elegans , Sobrevivência Celular/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Gânglios Espinais/metabolismo , Células HEK293 , Humanos , Lipoilação , MAP Quinase Quinase Quinases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Degeneração Neural/patologia , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Nervo Óptico/metabolismo , Ratos , Ratos Sprague-Dawley , Células Ganglionares da Retina/fisiologia
10.
Elife ; 92020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33185190

RESUMO

The palmitoyl acyltransferase (PAT) ZDHHC14 is highly expressed in the hippocampus and is the only PAT predicted to bind Type-I PDZ domain-containing proteins. However, ZDHHC14's neuronal roles are unknown. Here, we identify the PDZ domain-containing Membrane-associated Guanylate Kinase (MaGUK) PSD93 as a direct ZDHHC14 interactor and substrate. PSD93, but not other MaGUKs, localizes to the axon initial segment (AIS). Using lentiviral-mediated shRNA knockdown in rat hippocampal neurons, we find that ZDHHC14 controls palmitoylation and AIS clustering of PSD93 and also of Kv1 potassium channels, which directly bind PSD93. Neurodevelopmental expression of ZDHHC14 mirrors that of PSD93 and Kv1 channels and, consistent with ZDHHC14's importance for Kv1 channel clustering, loss of ZDHHC14 decreases outward currents and increases action potential firing in hippocampal neurons. To our knowledge, these findings identify the first neuronal roles and substrates for ZDHHC14 and reveal a previously unappreciated role for palmitoylation in control of neuronal excitability.


Assuntos
Aciltransferases/metabolismo , Axônios/enzimologia , Superfamília Shaker de Canais de Potássio/metabolismo , Aciltransferases/genética , Animais , Fenômenos Eletrofisiológicos , Regulação Enzimológica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Hipocampo/citologia , Humanos , Camundongos , Ligação Proteica , Superfamília Shaker de Canais de Potássio/genética , Técnicas do Sistema de Duplo-Híbrido
11.
J Biol Chem ; 295(46): 15427-15437, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32958558

RESUMO

Palmitoylation, the modification of proteins with the lipid palmitate, is a key regulator of protein targeting and trafficking. However, knowledge of the roles of specific palmitoyl acyltransferases (PATs), which catalyze palmitoylation, is incomplete. For example, little is known about which PATs are present in neuronal axons, although long-distance trafficking of palmitoyl-proteins is important for axon integrity and for axon-to-soma retrograde signaling, a process critical for axon development and for responses to injury. Identifying axonally targeted PATs might thus provide insights into multiple aspects of axonal biology. We therefore comprehensively determined the subcellular distribution of mammalian PATs in dorsal root ganglion (DRG) neurons and, strikingly, found that only two PATs, ZDHHC5 and ZDHHC8, were enriched in DRG axons. Signals via the Gp130/JAK/STAT3 and DLK/JNK pathways are important for axonal injury responses, and we found that ZDHHC5 and ZDHHC8 were required for Gp130/JAK/STAT3, but not DLK/JNK, axon-to-soma signaling. ZDHHC5 and ZDHHC8 robustly palmitoylated Gp130 in cotransfected nonneuronal cells, supporting the possibility that Gp130 is a direct ZDHHC5/8 substrate. In DRG neurons, Zdhhc5/8 shRNA knockdown reduced Gp130 palmitoylation and even more markedly reduced Gp130 surface expression, potentially explaining the importance of these PATs for Gp130-dependent signaling. Together, these findings provide new insights into the subcellular distribution and roles of specific PATs and reveal a novel mechanism by which palmitoylation controls axonal retrograde signaling.


Assuntos
Aciltransferases/metabolismo , Axônios/metabolismo , Transdução de Sinais , Aciltransferases/antagonistas & inibidores , Aciltransferases/genética , Animais , Células Cultivadas , Receptor gp130 de Citocina/genética , Receptor gp130 de Citocina/metabolismo , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Janus Quinases/metabolismo , Lipoilação , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Fator de Transcrição STAT3/metabolismo
12.
Front Cell Neurosci ; 13: 115, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31001086

RESUMO

The mechanistic target of rapamycin (mTOR) Complex 1 (mTORC1) controls growth and proliferation of non-neuronal cells, while during neuronal development mTORC1 responds to glutamate and neurotrophins to promote neuronal migration and dendritic arborization. Recent studies reveal that mTORC1 signaling complexes are assembled on lysosomal membranes, but how mTORC1 membrane targeting is regulated is not fully clear. Our examination of palmitoyl-proteomic databases and additional bioinformatic analyses revealed that several mTORC1 proteins are predicted to undergo covalent modification with the lipid palmitate. This process, palmitoylation, can dynamically target proteins to specific membranes but its roles in mTORC1 signaling are not well described. Strikingly, we found that acute pharmacological inhibition of palmitoylation prevents amino acid-dependent mTORC1 activation in HEK293T cells and brain-derived neurotrophic factor (BDNF)-dependent mTORC1 activation in hippocampal neurons. We sought to define the molecular basis for this finding and found that the mTORC1 proteins LAMTOR1 and mTOR itself are directly palmitoylated, while several other mTORC1 proteins are not palmitoylated, despite strong bioinformatic prediction. Interestingly, palmitoylation of LAMTOR1, whose anchoring on lysosomal membranes is important for mTORC1 signaling, was rapidly increased prior to mTORC1 activation. In contrast, mTOR palmitoylation was decreased by stimuli that activate mTORC1. These findings reveal that specific key components of the mTOR pathway are dynamically palmitoylated, suggesting that palmitoylation is not merely permissive for mTOR activation but is instead actively involved in mTORC1-dependent signaling.

13.
Sci Rep ; 9(1): 3632, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842471

RESUMO

After axonal insult and injury, Dual leucine-zipper kinase (DLK) conveys retrograde pro-degenerative signals to neuronal cell bodies via its downstream target c-Jun N-terminal kinase (JNK). We recently reported that such signals critically require modification of DLK by the fatty acid palmitate, via a process called palmitoylation. Compounds that inhibit DLK palmitoylation could thus reduce neurodegeneration, but identifying such inhibitors requires a suitable assay. Here we report that DLK subcellular localization in non-neuronal cells is highly palmitoylation-dependent and can thus serve as a proxy readout to identify inhibitors of DLK palmitoylation by High Content Screening (HCS). We optimized an HCS assay based on this readout, which showed highly robust performance in a 96-well format. Using this assay we screened a library of 1200 FDA-approved compounds and found that ketoconazole, the compound that most dramatically affected DLK localization in our primary screen, dose-dependently inhibited DLK palmitoylation in follow-up biochemical assays. Moreover, ketoconazole significantly blunted phosphorylation of c-Jun in primary sensory neurons subjected to trophic deprivation, a well known model of DLK-dependent pro-degenerative signaling. Our HCS platform is thus capable of identifying novel inhibitors of DLK palmitoylation and signalling that may have considerable therapeutic potential.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Cetoconazol/farmacologia , Lipoilação , MAP Quinase Quinase Quinases/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional , Técnicas de Química Combinatória , Inibidores do Citocromo P-450 CYP3A/farmacologia , Células HEK293 , Humanos , MAP Quinase Quinase Quinases/metabolismo , Transdução de Sinais
14.
Cell Rep ; 23(10): 2928-2941, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29874580

RESUMO

Spinal cord longitudinal axons comprise some of the longest axons in our body. However, mechanisms that drive this extra long-distance axonal growth are largely unclear. We found that ascending axons of rapidly adapting (RA) mechanoreceptors closely abut a previously undescribed population of roof plate-derived radial glial-like cells (RGLCs) in the spinal cord dorsal column, which form a network of processes enriched with growth-promoting factors. In dreher mutant mice that lack RGLCs, the lengths of ascending RA mechanoreceptor axon branches are specifically reduced, whereas their descending and collateral branches, and other dorsal column and sensory pathways, are largely unaffected. Because the number and intrinsic growth ability of RA mechanoreceptors are normal in dreher mice, our data suggest that RGLCs provide critical non-cell autonomous growth support for the ascending axons of RA mechanoreceptors. Together, our work identifies a developmental mechanism specifically required for long-range spinal cord longitudinal axons.


Assuntos
Axônios/metabolismo , Mecanorreceptores/metabolismo , Neuroglia/metabolismo , Medula Espinal/citologia , Adaptação Fisiológica , Animais , Biomarcadores/metabolismo , Forma Celular , Camundongos Mutantes
15.
Sociol Health Illn ; 39(6): 811-815, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28677873

RESUMO

'Controlling life was and is to be achieved in part by rationalizing and industrializing reproductive processes. Multiple heterogeneous and contradictory groups have had an interest in achieving such control - from elites seeking to control others to individuals, especially women, trying to get a grip on their own lives through controlling their reproduction; from eugenicists ultimately trying to control evolution to neo-Malthusians trying to control national and population size; from philanthropists and foundation executives trying to shape the future of science and human life in varied directions to reproductive scientists trying to do their research … The biomedicalization of life itself (human, plant, and animal) is the key overarching and usually taken for granted social process here' (Clarke : 273-5).


Assuntos
Educação Infantil , Poder Familiar , Parto , Política , Reprodução , Criança , Feminino , Humanos , Masculino , Gravidez
16.
Sociol Health Illn ; 39(6): 893-907, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28326555

RESUMO

The premise that ultrasound technologies provide reassurance for pregnant women is well-rehearsed. However, there has been little research about how this reassurance is articulated and understood by both expectant mothers and health care professionals. In this article, we draw on two qualitative UK studies to explore the salience of ultrasound reassurance to women's pregnancy experiences whilst highlighting issues around articulation and silence. Specifically, we capture how expectant parents express a general need for reassurance and how visualisation and the conduct of professionals have a crucial role to play in accomplishing a sense of reassurance. We also explore how professionals have ambiguities about the relationship between ultrasound and reassurance, and how they subsequently articulate reassurance to expectant mothers. By bringing two studies together, we take a broad perspectival view of how gaps and silences within the discourse of ultrasound reassurance leave the claims made for ultrasound as a technology of reassurance unchallenged. Finally, we explore the implications this can have for women's experiences of pregnancy and health care professionals' practices.


Assuntos
Pessoal de Saúde/psicologia , Mães/psicologia , Relações Profissional-Paciente , Ultrassonografia Pré-Natal/estatística & dados numéricos , Adulto , Feminino , Humanos , Gravidez , Complicações na Gravidez/prevenção & controle , Pesquisa Qualitativa
17.
J Neurosci Res ; 95(8): 1528-1539, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28150429

RESUMO

The protein-lipid modification palmitoylation plays important roles in neurons, but most attention has focused on roles of this modification in the regulation of mature pre- and post-synapses. However, exciting recent findings suggest that palmitoylation is also critical for both the growth and integrity of neuronal axons and plays previously unappreciated roles in conveying axonal anterograde and retrograde signals. Here we review these emerging roles for palmitoylation in the regulation of axons in health and disease. © 2017 Wiley Periodicals, Inc.


Assuntos
Axônios/fisiologia , Lipoilação/fisiologia , Degeneração Neural/fisiopatologia , Regeneração Nervosa/fisiologia , Crescimento Neuronal/fisiologia , Animais , Humanos , Degeneração Neural/metabolismo
19.
Health Place ; 38: 1-7, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26796322

RESUMO

This article highlights the importance of dissecting the complex relationship between stigma, health, and place. Drawing on qualitative research with young people in a post-industrial town in the UK, I explore how these young people reflect on their broad sense of health in a stigmatized community. I capture the multiple senses of place experienced by young people and how they come to imagine, negotiate, resist, and accommodate this stigmatization. I conclude by unpacking what implications place-based stigma has for policy as well as for studying young people's health and wellbeing.


Assuntos
Atitude Frente a Saúde , Características de Residência , Estigma Social , Adolescente , Feminino , Humanos , Entrevistas como Assunto , Masculino , Satisfação Pessoal , Pesquisa Qualitativa , Reino Unido
20.
Proc Natl Acad Sci U S A ; 113(3): 763-8, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26719418

RESUMO

Dual leucine-zipper kinase (DLK) is critical for axon-to-soma retrograde signaling following nerve injury. However, it is unknown how DLK, a predicted soluble kinase, conveys long-distance signals and why homologous kinases cannot compensate for loss of DLK. Here, we report that DLK, but not homologous kinases, is palmitoylated at a conserved site adjacent to its kinase domain. Using short-hairpin RNA knockdown/rescue, we find that palmitoylation is critical for DLK-dependent retrograde signaling in sensory axons. This functional importance is because of three novel cellular and molecular roles of palmitoylation, which targets DLK to trafficking vesicles, is required to assemble DLK signaling complexes and, unexpectedly, is essential for DLK's kinase activity. By simultaneously controlling DLK localization, interactions, and activity, palmitoylation ensures that only vesicle-bound DLK is active in neurons. These findings explain how DLK specifically mediates nerve injury responses and reveal a novel cellular mechanism that ensures the specificity of neuronal kinase signaling.


Assuntos
Axônios/metabolismo , Axônios/patologia , Proteínas de Caenorhabditis elegans/metabolismo , Lipoilação , MAP Quinase Quinase Quinases/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Sequência Conservada , Evolução Molecular , Corantes Fluorescentes/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , MAP Quinase Quinase Quinases/química , Microfluídica , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Fosforilação , Ligação Proteica , Multimerização Proteica , Transporte Proteico , RNA Interferente Pequeno/metabolismo , Ratos , Células Receptoras Sensoriais/metabolismo , Transfecção , Vesículas Transportadoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...