Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mech Dev ; 126(8-9): 700-9, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19481601

RESUMO

Acheron (Achn), a phylogenetically-conserved member of the Lupus antigen family of RNA binding proteins, was initially identified as a novel cell death-associated gene from the intersegmental muscles of the tobacco hawkmoth Manduca sexta. C(2)C(12) cells are a standard model for the study of myogenesis. When deprived of growth factors, these cells can be induced to: form multinucleated myotubes, arrest as quiescent satellite-like reserve cells, or undergo apoptosis. Achn expression is induced in myoblasts that form myotubes and acts upstream of the muscle specific transcription factor MyoD. Forced expression of ectopic Achn resulted in the formation of larger myotubes and massive reserve cell death relative to controls. Conversely, dominant-negative or antisense Achn blocked myotube formation following loss of growth factors, suggesting that Achn plays an essential, permissive role in myogenesis. Studies in zebrafish embryos support this hypothesis. Reduction of Achn with antisense morpholinos led to muscle fiber loss and an increase in the number of surviving cells in the somites, while ectopic Achn enhanced muscle fiber formation and reduced cell numbers. These results display a crucial evolutionarily conserved role for Achn in myogenesis and suggest that it plays key roles in the processes of differentiation and self-renewal.


Assuntos
Autoantígenos/fisiologia , Regulação da Expressão Gênica , Músculos/citologia , Ribonucleoproteínas/fisiologia , Animais , Apoptose , Autoantígenos/metabolismo , Diferenciação Celular , Linhagem Celular , Sobrevivência Celular , Manduca/metabolismo , Camundongos , Modelos Biológicos , Músculos/embriologia , Músculos/metabolismo , Proteína MyoD/metabolismo , Filogenia , Ribonucleoproteínas/metabolismo , Células-Tronco/citologia , Peixe-Zebra , Antígeno SS-B
2.
Endocrinology ; 149(9): 4435-51, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18499750

RESUMO

The vertebrate adenohypophysis forms as a placode at the anterior margin of the neural plate, requiring both hedgehog (Hh) and fibroblast growth factor (Fgf) mediated cell-cell signaling for induction and survival of endocrine cell types. Using small molecule inhibitors to modulate signaling levels during zebrafish development we show that graded Hh and Fgf signaling independently help establish the two subdomains of the adenohypophysis, the anteriorly located pars distalis (PD) and the posterior pars intermedia (PI). High levels of Hh signaling are required for formation of the PD and differentiation of anterior endocrine cell types, whereas lower levels of Hh signaling are required for formation of the PI and differentiation of posterior endocrine cell types. In contrast, high Fgf signaling levels are required for formation of the PI and posterior endocrine cell differentiation, whereas anterior regions require lower levels of Fgf signaling. Based on live observations and marker analyses, we show that the PD forms first at the midline closest to the central nervous system source of Sonic hedgehog. In contrast the PI appears to form from more lateral/posterior cells close to a central nervous system source of Fgf3. Together our data show that graded Hh and Fgf signaling independently direct induction of the PD and PI and help establish endocrine cell fates along the anterior/posterior axis of the zebrafish adenohypophysis. These data suggest that there are distinct origins and signaling requirements for the PD and PI.


Assuntos
Diferenciação Celular , Fatores de Crescimento de Fibroblastos/fisiologia , Proteínas Hedgehog/fisiologia , Adeno-Hipófise/embriologia , Adeno-Hipófise Parte Intermédia/embriologia , Hipófise/embriologia , Animais , Padronização Corporal/genética , Padronização Corporal/fisiologia , Diferenciação Celular/genética , Simulação por Computador , Embrião não Mamífero , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Modelos Biológicos , Hipófise/metabolismo , Hipófise/fisiologia , Adeno-Hipófise/metabolismo , Adeno-Hipófise Parte Intermédia/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Transcrição Gênica , Peixe-Zebra
3.
Methods ; 39(3): 207-11, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16837210

RESUMO

The combination of accessible embryology and forward genetic techniques has made zebrafish a powerful model system for the study of vertebrate development. One limitation of genetic analysis is that the study of gene function is usually limited to the first developmental event affected by a gene. In vivo electroporation has recently matured as a method for studying gene function at different developmental time points and in specific regions of the organism. The focal application of current allows macromolecules to be efficiently introduced into a targeted region at any time in the life cycle. Here we describe a rapid protocol by which DNA, RNA and morpholinos can all be precisely electroporated into zebrafish in a temporally and spatially controlled manner. This versatile technique allows gene function to be determined by both gain and loss of function analyses in specific regions at specific times. This is the first report that describes the electroporation of three different molecules into embryonic and larval zebrafish cells.


Assuntos
DNA , Eletroporação/métodos , Oligonucleotídeos Antissenso , RNA , Peixe-Zebra/genética , Animais , Eletroporação/instrumentação , Embrião não Mamífero/química , Proteínas de Fluorescência Verde/análise , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/análise , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...