Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 95(6)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31150537

RESUMO

The bacterium Xanthomonas citri subsp. citri (Xcc) is responsible for the widely distributed disease citrus canker. In the last years, Xcc has become a model for the study of plant pathogens, and here we used this bacterium to examine stress on the pathogen during adaptions required for leaf colonization. In the first stages of citrus canker cycle, bacteria encounter low water availability and osmotic stress that can affect their maintenance on plant surfaces. To examine such conditions, we conducted a proteome analysis of Xcc grown in culture medium supplemented with 0.25 M sodium chloride and compared it to control conditions. We found that salt stress induced changes in known stress-induced proteins and also revealed novel stress response proteins. Moreover, some of the bacterial processes associated with bacterial fitness and virulence were modified under salt stress conditions. In particular, swimming, twitching and surface motilities were decreased, while biofilm formation was increased under salt stress. Other adaptations to high salt included reduced bacterial size and increased survival of bacteria exposed to oxidative stress. Furthermore, expression of type III protein secretion system related genes were augmented under salt stress condition. Our results offer new insight into molecular mechanisms that govern phytopathogen adaptation to harsh environments. These adaptations affect life cycle progression which in turn influences virulence.


Assuntos
Proteínas de Bactérias/metabolismo , Citrus/microbiologia , Doenças das Plantas/microbiologia , Proteoma , Xanthomonas/fisiologia , Adaptação Fisiológica , Proteínas de Bactérias/genética , Folhas de Planta/microbiologia , Estresse Salino , Virulência , Xanthomonas/patogenicidade
2.
J Exp Bot ; 66(9): 2795-811, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25770587

RESUMO

Xanthomonas citri subsp. citri (Xcc) is a bacterial pathogen that causes citrus canker in susceptible Citrus spp. The Xcc genome contains genes encoding enzymes from three separate pathways of trehalose biosynthesis. Expression of genes encoding trehalose-6-phosphate synthase (otsA) and trehalose phosphatase (otsB) was highly induced during canker development, suggesting that the two-step pathway of trehalose biosynthesis via trehalose-6-phosphate has a function in pathogenesis. This pathway was eliminated from the bacterium by deletion of the otsA gene. The resulting XccΔotsA mutant produced less trehalose than the wild-type strain, was less resistant to salt and oxidative stresses, and was less able to colonize plant tissues. Gene expression and proteomic analyses of infected leaves showed that infection with XccΔotsA triggered only weak defence responses in the plant compared with infection with Xcc, and had less impact on the host plant's metabolism than the wild-type strain. These results suggested that trehalose of bacterial origin, synthesized via the otsA-otsB pathway, in Xcc, plays a role in modifying the host plant's metabolism to its own advantage but is also perceived by the plant as a sign of pathogen attack. Thus, trehalose biosynthesis has both positive and negative consequences for Xcc. On the one hand, it enables this bacterial pathogen to survive in the inhospitable environment of the leaf surface before infection and exploit the host plant's resources after infection, but on the other hand, it is a tell-tale sign of the pathogen's presence that triggers the plant to defend itself against infection.


Assuntos
Citrus/microbiologia , Trealose/fisiologia , Fatores de Virulência/metabolismo , Xanthomonas/patogenicidade , Vias Biossintéticas/genética , Citrus/metabolismo , Citrus/fisiologia , Resistência à Doença , Mutação , Estresse Oxidativo , Fotossíntese , Doenças das Plantas , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia , Proteoma , Cloreto de Sódio/metabolismo , Fosfatos Açúcares/metabolismo , Trealose/análogos & derivados , Trealose/biossíntese , Trealose/metabolismo , Trealose/farmacologia , Fatores de Virulência/genética , Xanthomonas/enzimologia , Xanthomonas/genética
3.
BMC Microbiol ; 13: 186, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23924281

RESUMO

BACKGROUND: Xanthomonas axonopodis pv. citri (X. a. pv. citri) causes citrus canker that can result in defoliation and premature fruit drop with significant production losses worldwide. Biofilm formation is an important process in bacterial pathogens and several lines of evidence suggest that in X. a. pv. citri this process is a requirement to achieve maximal virulence since it has a major role in host interactions. In this study, proteomics was used to gain further insights into the functions of biofilms. RESULTS: In order to identify differentially expressed proteins, a comparative proteomic study using 2D difference gel electrophoresis was carried out on X. a. pv. citri mature biofilm and planktonic cells. The biofilm proteome showed major variations in the composition of outer membrane proteins and receptor or transport proteins. Among them, several porins and TonB-dependent receptor were differentially regulated in the biofilm compared to the planktonic cells, indicating that these proteins may serve in maintaining specific membrane-associated functions including signaling and cellular homeostasis. In biofilms, UDP-glucose dehydrogenase with a major role in exopolysaccharide production and the non-fimbrial adhesin YapH involved in adherence were over-expressed, while a polynucleotide phosphorylase that was demonstrated to negatively control biofilm formation in E. coli was down-regulated. In addition, several proteins involved in protein synthesis, folding and stabilization were up-regulated in biofilms. Interestingly, some proteins related to energy production, such as ATP-synthase were down-regulated in biofilms. Moreover, a number of enzymes of the tricarboxylic acid cycle were differentially expressed. In addition, X. a. pv. citri biofilms also showed down-regulation of several antioxidant enzymes. The respective gene expression patterns of several identified proteins in both X. a. pv. citri mature biofilm and planktonic cells were evaluated by quantitative real-time PCR and shown to consistently correlate with those deduced from the proteomic study. CONCLUSIONS: Differentially expressed proteins are enriched in functional categories. Firstly, proteins that are down-regulated in X. a. pv. citri biofilms are enriched for the gene ontology (GO) terms 'generation of precursor metabolites and energy' and secondly, the biofilm proteome mainly changes in 'outer membrane and receptor or transport'. We argue that the differentially expressed proteins have a critical role in maintaining a functional external structure as well as enabling appropriate flow of nutrients and signals specific to the biofilm lifestyle.


Assuntos
Proteínas de Bactérias/química , Biofilmes , Citrus/microbiologia , Doenças das Plantas/microbiologia , Proteômica , Xanthomonas axonopodis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Xanthomonas axonopodis/química , Xanthomonas axonopodis/fisiologia
4.
BMC Plant Biol ; 10: 51, 2010 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-20302677

RESUMO

BACKGROUND: Plant natriuretic peptides (PNPs) belong to a novel class of peptidic signaling molecules that share some structural similarity to the N-terminal domain of expansins and affect physiological processes such as water and ion homeostasis at nano-molar concentrations. The citrus pathogen Xanthomonas axonopodis pv. citri possesses a PNP-like peptide (XacPNP) uniquely present in this bacteria. Previously we observed that the expression of XacPNP is induced upon infection and that lesions produced in leaves infected with a XacPNP deletion mutant were more necrotic and lead to earlier bacterial cell death, suggesting that the plant-like bacterial PNP enables the plant pathogen to modify host responses in order to create conditions favorable to its own survival. RESULTS: Here we measured chlorophyll fluorescence parameters and water potential of citrus leaves infiltrated with recombinant purified XacPNP and demonstrate that the peptide improves the physiological conditions of the tissue. Importantly, the proteomic analysis revealed that these responses are mirrored by rapid changes in the host proteome that include the up-regulation of Rubisco activase, ATP synthase CF1 alpha subunit, maturase K, and alpha- and beta-tubulin. CONCLUSIONS: We demonstrate that XacPNP induces changes in host photosynthesis at the level of protein expression and in photosynthetic efficiency in particular. Our findings suggest that the biotrophic pathogen can use the plant-like hormone to modulate the host cellular environment and in particular host metabolism and that such modulations weaken host defence.


Assuntos
Citrus/metabolismo , Citrus/microbiologia , Interações Hospedeiro-Patógeno , Peptídeos Natriuréticos/metabolismo , Proteoma/metabolismo , Xanthomonas axonopodis/metabolismo , Arabidopsis/metabolismo , Clorofila/metabolismo , Biologia Computacional , Eletroforese em Gel Bidimensional , Fluorescência , Espectrometria de Massas , Mutação/genética , Fotossíntese , Folhas de Planta/metabolismo , Proteínas de Plantas/análise , Proteínas de Plantas/química , Regiões Promotoras Genéticas/genética , Proteoma/química , Proteômica , Homologia de Sequência de Aminoácidos
5.
PLoS One ; 5(1): e8950, 2010 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-20126632

RESUMO

Xanthomonas citri pv. citri, the bacteria responsible for citrus canker posses a biological active plant natriuretic peptide (PNP)-like protein, not present in any other bacteria. PNPs are a class of extracellular, systemically mobile peptides that elicit a number of plant responses important in homeostasis and growth. Previously, we showed that a Xanthomonas citri pv. citri mutant lacking the PNP-like protein XacPNP produced more necrotic lesions in citrus leaves than wild type infections and suggested a role for XacPNP in the regulation of host homeostasis. Here we have analyzed the proteome modifications observed in citrus leaves infected with the wild type and XacPNP deletion mutant bacteria. While both of them cause down-regulation of enzymes related to photosynthesis as well as chloroplastic ribosomal proteins, proteins related to defense responses are up-regulated. However, leaves infiltrated with the XacPNP deletion mutant show a more pronounced decrease in photosynthetic proteins while no reduction in defense related proteins as compared to the wild-type pathogen. This suggests that XacPNP serves the pathogen to maintain host photosynthetic efficiency during pathogenesis. The results from the proteomics analyses are consistent with our chlorophyll fluorescence data and transcript analyses of defense genes that show a more marked reduction in photosynthesis in the mutant but no difference in the induction of genes diagnostic for biotic-stress responses. We therefore conclude that XacPNP counteracts the shut-down of host photosynthesis during infection and in that way maintains the tissue in better conditions, suggesting that the pathogen has adapted a host gene to modify its natural host and render it a better reservoir for prolonged bacterial survival and thus for further colonization.


Assuntos
Citrus/microbiologia , Genes de Plantas , Fotossíntese , Xanthomonas/fisiologia , Eletroforese em Gel Bidimensional , Homeostase , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteoma , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA