Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36676364

RESUMO

The article presents durability results for cement mortars made with the addition of slag from municipal waste incineration plants as a replacement for natural aggregate. The undertaken durability tests included frost resistance tests and evaluation of strength, microstructure, water absorption and abrasiveness before and after 150 freeze-thaw cycles. The work reveals that MSWI slag in amounts up to 50 vol. % caused deterioration in the workability and water absorption of cement mortars, regardless of the type of cement used. This, in turn, resulted in a reduction in the compressive and flexural strengths of the composites compared to mortars made with sand alone. Nevertheless, the use of a higher grade of cement, CEM I 52.5 R, resulted in an increase in compressive strength and thus increased the mortars' frost and abrasion resistance. In addition, after the induced freeze-thaw cycles, mortars made with MSWI slag showed comparable or higher frost and abrasion resistance than those made using natural aggregate.

2.
Materials (Basel) ; 15(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35160945

RESUMO

Limitations in natural aggregate resources and the continuous increase in the demand for concrete as a building material, as well as the increase in the production of waste and the problem with its storage were the reasons for attempts to replace the sand fraction in cement matrices with a corresponding slag fraction. Municipal solid waste incineration (MSWI) slag, which is a product of waste incineration, can be used as an aggregate. This extends its service life and reduces landfill waste. Therefore, three types of cement mortars with different aggregate composition were prepared. In addition, to increase the durability of the cement matrix and the degree of immobilization of harmful heavy metals and salts present in the slag, a natural zeolite with pozzolanic properties was used. A set of tests was carried out on fresh mortar and hardened mortar, including strength tests after 7, 28 and 360 days. What is more, chemical tests were undertaken, including the content of chlorides and sulfates, leaching using the TCLP method and oxide composition. The conducted tests revealed that all mortars had similar strength properties and demonstrated the effectiveness of immobilizing harmful substances contained in the municipal solid waste incineration (MSWI) slag by cementing.

3.
Materials (Basel) ; 14(10)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063482

RESUMO

The study analyzed potential applicability for asymmetric reinforcement of glulam beams using materials with a higher modulus of elasticity. Reinforcement elements included smooth and ribbed steel rods as well as basalt rods. These rods were placed only in the tensile zone, assuming that they will not only impart increased rigidity but first of all will reduce the scatter of bending strength values. What is significant, tests were conducted on timber with defects, as it is most commonly used in industrial practice. Analyses showed that this provides an increase in rigidity close to the assumed level. A significant increase in strength was observed. The manufactured beams reinforced with steel and basalt rods were characterized by mean bending strength amounting to 54 and 47 N/mm2, respectively. However, no significant improvement was found in the scatter of the observed variable. Beams reinforced with steel exhibit a 20% higher strength than unreinforced beams. The lower strength of beams reinforced with basalt bars may be related to the lower modulus of elasticity of the basalt itself.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...