Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Res ; 19(8): 1375-1388, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33863814

RESUMO

Asparagine synthetase (ASNS) is a gene on the long arm of chromosome 7 that is copy-number amplified in the majority of glioblastomas. ASNS copy-number amplification is associated with a significantly decreased survival. Using patient-derived glioma stem cells (GSC), we showed that significant metabolic alterations occur in gliomas when perturbing the expression of ASNS, which is not merely restricted to amino acid homeostasis. ASNS-high GSCs maintained a slower basal metabolic profile yet readily shifted to a greatly increased capacity for glycolysis and oxidative phosphorylation when needed. This led ASNS-high cells to a greater ability to proliferate and spread into brain tissue. Finally, we demonstrate that these changes confer resistance to cellular stress, notably oxidative stress, through adaptive redox homeostasis that led to radiotherapy resistance. Furthermore, ASNS overexpression led to modifications of the one-carbon metabolism to promote a more antioxidant tumor environment revealing a metabolic vulnerability that may be therapeutically exploited. IMPLICATIONS: This study reveals a new role for ASNS in metabolic control and redox homeostasis in glioma stem cells and proposes a new treatment strategy that attempts to exploit one vulnerable metabolic node within the larger multilayered tumor network.


Assuntos
Asparagina/biossíntese , Neoplasias do Tronco Encefálico/metabolismo , Encéfalo/metabolismo , Glioma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Estresse Oxidativo/fisiologia , Animais , Aspartato-Amônia Ligase/metabolismo , Células HEK293 , Humanos , Camundongos , Estudos Retrospectivos
2.
Cancer Lett ; 408: 174-181, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28743531

RESUMO

Cancer metabolism has emerged as one of the most interesting old ideas being revisited from a new perspective. In the early 20th century Otto Warburg declared metabolism the prime cause in a disease of many secondary causes, and this statement seems more prescient in view of modern expositions into the true nature of tumor evolution. As the complexity of tumor heterogeneity becomes more clear from a genetic perspective, it is important to consider the inevitably heterogeneous metabolic components of the tumor and the tumor microenvironment. High grade gliomas remain one of the most difficult to treat solid tumors, due in part to the highly vascularized nature of the tumor and the maintenance of more resistant stem-like subpopulations within the tumor. Maintenance of glioma stem cells (GSCs) requires specific alterations within the cells and the greater tumor microenvironment with regards to signaling and metabolism. Specific niches within gliomas help foster the survival of stem-like sub-populations of cells with high tumorigenicity and high metabolic plasticity. Understanding these maintenance pathways and the metabolic dependencies within the niche may highlight potential avenues of addressing tumor resistance and recurrence in glioma patients.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , Células-Tronco Neoplásicas/metabolismo , Microambiente Tumoral , Animais , Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Glicólise , Humanos , Transdução de Sinais
3.
Adv Exp Med Biol ; 853: 139-66, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25895711

RESUMO

For decades human brain tumors have confounded our efforts to effectively manage and treat patients. In adults, glioblastoma multiforme is the most common malignant brain tumor with a patient survival of just over 14 months. In children, brain tumors are the leading cause of solid tumor cancer death and gliomas account for one-fifth of all childhood cancers. Despite advances in conventional treatments such as surgical resection, radiotherapy, and systemic chemotherapy, the incidence and mortality rates for gliomas have essentially stayed the same. Furthermore, research efforts into novel therapeutics that initially appeared promising have yet to show a marked benefit. A shocking and somewhat disturbing view is that investigators and clinicians may have been targeting the wrong cells, resulting in the appearance of the removal or eradication of patient gliomas only to have brain cancer recurrence. Here we review research progress in immunotherapy as it pertains to glioma treatment and how it can and is being adapted to target glioma stem cells (GSCs) as a means of dealing with this potential paradigm.


Assuntos
Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Glioma/imunologia , Glioma/terapia , Imunoterapia/métodos , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/patologia , Adulto , Animais , Neoplasias Encefálicas/patologia , Ensaios Clínicos como Assunto , Glioma/patologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...