Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22281553

RESUMO

ImportanceThe origin of highly divergent "cryptic" SARS-CoV-2 Spike sequences, which appear in wastewater but not clinical samples, is unknown. These wastewater sequences have harbored many of the same mutations that later emerged in Omicron variants. If these enigmatic sequences are human-derived and transmissible, they could both be a source of future variants and a valuable tool for forecasting sequences that should be incorporated into vaccines and therapeutics. ObjectiveTo determine whether enigmatic SARS-CoV-2 lineages detected in wastewater have a human or non-human (i.e., animal) source. DesignOn January 11, 2022, an unusual Spike sequence was detected in municipal wastewater from a metropolitan area. Over the next four months, more focused wastewater sampling resolved the source of this variant. SettingThis study was performed in Wisconsin, United States, which has a comprehensive program for detecting SARS-CoV-2 in wastewater. ParticipantsComposite wastewater samples were used for this study; therefore, no individuals participated. Main Outcome(s) and Measure(s)The primary outcome was to determine the host(s) responsible for shedding this variant in wastewater. Both human and non-human hosts were plausible candidates at the studys outset. ResultsThe presence of the cryptic virus was narrowed from a municipal wastewater sample (catchment area >100,000 people) to an indoor wastewater sample from a single facility (catchment area [~]30 people), indicating the human origin of this virus. Extraordinarily high concentrations of viral RNA ([~]520,000,000 genome copies / L and [~]1,600,000,000 genome copies / L in June and August 2022, respectively) were detected in the indoor wastewater sample. The virus sequence harbored a combination of fixed nucleotide substitutions previously observed only in Pango lineage B.1.234, a variant that circulated at low levels in Wisconsin from October 2020 to February 2021. Conclusions and RelevanceHigh levels of persistent SARS-CoV-2 shedding from the gastrointestinal tract of an infected individual likely explain the presence of evolutionarily advanced "cryptic variants" observed in some wastewater samples. Key points QuestionWhat is the source of unusual SARS-CoV-2 Omicron-like Spike variants detected in wastewater but not in clinical samples? FindingsWe identified a cryptic SARS-CoV-2 lineage in wastewater collected at a central wastewater treatment facility and traced its source to a single wastewater outlet serving six restrooms. The virus in this sample resembled a 2020-2021 lineage except for the Spike protein, in which Omicron-like variants were observed. MeaningProlonged shedding from the human gastrointestinal tract is the most likely source for evolutionarily advanced SARS-CoV-2 variant sequences found in wastewater.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21265750

RESUMO

The consequences of past COVID-19 infection for personal health and long-term population immunity are only starting to be revealed. Unfortunately, detecting past infection is currently a challenge, limiting clinical and research endeavors. Widely available anti-SARS-CoV-2 antibody tests cannot differentiate between past infection and vaccination given vaccine-induced anti-spike antibodies and the rapid loss of infection-induced anti-nucleocapsid antibodies. Anti-membrane antibodies develop after COVID-19, but their long-term persistence is unknown. Here, we demonstrate that anti-membrane IgG is a sensitive and specific marker of past COVID-19 infection and persists at least one year. We also confirm that anti-receptor binding domain (RBD) Ig is a long-lasting, sensitive, and specific marker of past infection and vaccination, while anti-nucleocapsid IgG lacks specificity and quickly declines after COVID-19. Thus, a combination of anti-membrane and anti-RBD antibodies can accurately differentiate between distant COVID-19 infection, vaccination, and naive states to advance public health, individual healthcare, and research goals.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21261387

RESUMO

The SARS-CoV-2 Delta Variant of Concern is highly transmissible and contains mutations that confer partial immune escape. The emergence of Delta in North America caused the first surge in COVID-19 cases after SARS-CoV-2 vaccines became widely available. To determine whether individuals infected despite vaccination might be capable of transmitting SARS-CoV-2, we compared RT-PCR cycle threshold (Ct) data from 20,431 test-positive anterior nasal swab specimens from fully vaccinated (n = 9,347) or unvaccinated (n=11,084) individuals tested at a single commercial laboratory during the interval 28 June - 1 December 2021 when Delta variants were predominant. We observed no significant effect of vaccine status alone on Ct value, nor when controlling for vaccine product or sex. Testing a subset of low-Ct (<25) samples, we detected infectious virus at similar rates, and at similar titers, in specimens from vaccinated and unvaccinated individuals. These data indicate that vaccinated individuals infected with Delta variants are capable of shedding infectious SARS-CoV-2 and could play a role in spreading COVID-19.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20204842

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic exposed difficulties in scaling current quantitative PCR (qPCR)-based diagnostic methodologies for large-scale infectious disease testing. Bottlenecks include the lengthy multi-step process of nucleic acid extraction followed by qPCR readouts, which require costly instrumentation and infrastructure, as well as reagent and plastic consumable shortages stemming from supply chain constraints. Here we report a novel Oil Immersed Lossless Total Analysis System (OIL-TAS), which integrates RNA extraction and detection onto a single device that is simple, rapid, cost effective, uses minimal supplies and requires reduced infrastructure to perform. We validated the performance of OIL-TAS using contrived samples containing inactivated SARS-CoV-2 viral particles, which show that the assay can reliably detect an input concentration of 10 copies/L and sporadically detect down to 1 copy/L. The OIL-TAS method can serve as a faster, cheaper, and easier-to-deploy alternative to current qPCR-based methods for infectious disease testing.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20149104

RESUMO

Evidence-based public health approaches that minimize the introduction and spread of new SARS-CoV-2 transmission clusters are urgently needed in the United States and other countries struggling with expanding epidemics. Here we analyze 247 full-genome SARS-CoV-2 sequences from two nearby communities in Wisconsin, USA, and find surprisingly distinct patterns of viral spread. Dane County had the 12th known introduction of SARS-CoV-2 in the United States, but this did not lead to descendant community spread. Instead, the Dane County outbreak was seeded by multiple later introductions, followed by limited community spread. In contrast, relatively few introductions in Milwaukee County led to extensive community spread. We present evidence for reduced viral spread in both counties, and limited viral transmission between counties, following the statewide "Safer at Home" public health order, which went into effect 25 March 2020. Our results suggest that early containment efforts suppressed the spread of SARS-CoV-2 within Wisconsin.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20164038

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) control in the United States remains hampered, in part, by testing limitations. We evaluated a simple, outdoor, mobile, colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay workflow where self-collected saliva is tested for SARS-CoV-2 RNA. From July 16 to November 19, 2020, 4,704 surveillance samples were collected from volunteers and tested for SARS-CoV-2 at 5 sites. A total of 21 samples tested positive for SARS-CoV-2 by RT-LAMP; 12 were confirmed positive by subsequent quantitative reverse-transcription polymerase chain reaction (qRT-PCR) testing, while 8 were negative for SARS-CoV-2 RNA, and 1 could not be confirmed because the donor did not consent to further molecular testing. We estimated the RT-LAMP assays false-negative rate from July 16 to September 17, 2020 by pooling residual heat-inactivated saliva that was unambiguously negative by RT-LAMP into groups of 6 or less and testing for SARS-CoV-2 RNA by qRT-PCR. We observed a 98.8% concordance between the RT-LAMP and qRT-PCR assays, with only 5 of 421 RT-LAMP negative pools (2,493 samples) testing positive in the more sensitive qRT-PCR assay. Overall, we demonstrate a rapid testing method that can be implemented outside the traditional laboratory setting by individuals with basic molecular biology skills and can effectively identify asymptomatic individuals who would not typically meet the criteria for symptom-based testing modalities.

7.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20077016

RESUMO

BackgroundHealthcare workers (HCWs) are at the frontlines of the COVID-19 pandemic and are at risk of exposure to SARS-CoV-2 infection from their interactions with patients and in the community (1, 2). Limited availability of recommended personal protective equipment (PPE), in particular N95 respirators, has fueled concerns about whether HCWs are adequately protected from exposure while caring for patients. Understanding the source of SARS-CoV-2 infection in a HCW - the community or the healthcare system - is critical for understanding the effectiveness of hospital infection control and PPE practices. In Dane County, Wisconsin, community prevalence of SARS-CoV-2 is relatively low (cumulative prevalence of ~0.06% - positive cases / total population in Dane county as of April 17). Although SARS-CoV-2 infections in HCWs are often presumed to be acquired during the course of patient care, there are few reports unambiguously identifying the source of acquisition. ObjectiveTo determine the source of transmission of SARS-CoV-2 in a healthcare worker.

8.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-096727

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing an exponentially increasing number of coronavirus disease 19 (COVID-19) cases globally. Prioritization of medical countermeasures for evaluation in randomized clinical trials is critically hindered by the lack of COVID-19 animal models that enable accurate, quantifiable, and reproducible measurement of COVID-19 pulmonary disease free from observer bias. We first used serial computed tomography (CT) to demonstrate that bilateral intrabronchial instillation of SARS-CoV-2 into crab-eating macaques (Macaca fascicularis) results in mild-to-moderate lung abnormalities qualitatively characteristic of subclinical or mild-to-moderate COVID-19 (e.g., ground-glass opacities with or without reticulation, paving, or alveolar consolidation, peri-bronchial thickening, linear opacities) at typical locations (peripheral>central, posterior and dependent, bilateral, multi-lobar). We then used positron emission tomography (PET) analysis to demonstrate increased FDG uptake in the CT-defined lung abnormalities and regional lymph nodes. PET/CT imaging findings appeared in all macaques as early as 2 days post-exposure, variably progressed, and subsequently resolved by 6-12 days post-exposure. Finally, we applied operator-independent, semi-automatic quantification of the volume and radiodensity of CT abnormalities as a possible primary endpoint for immediate and objective efficacy testing of candidate medical countermeasures.

9.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-051011

RESUMO

Since the first reports of pneumonia associated with a novel coronavirus (COVID-19) emerged in Wuhan, Hubei province, China, there have been considerable efforts to sequence the causative virus, SARS-CoV-2 (also referred to as hCoV-19) and to make viral genomic information available quickly on shared repositories. As of 30 March 2020, 7,680 consensus sequences have been shared on GISAID, the principal repository for SARS-CoV-2 genetic information. These sequences are primarily consensus sequences from clinical and passaged samples, but few reports have looked at diversity of virus populations within individual hosts or cultures. Understanding such diversity is essential to understanding viral evolutionary dynamics. Here, we characterize within-host viral diversity from a primary isolate and passaged samples, all originally deriving from an individual returning from Wuhan, China, who was diagnosed with COVID-19 and subsequently sampled in Wisconsin, United States. We use a metagenomic approach with Oxford Nanopore Technologies (ONT) GridION in combination with Illumina MiSeq to capture minor within-host frequency variants [≥]1%. In a clinical swab obtained from the day of hospital presentation, we identify 15 single nucleotide variants (SNVs) [≥]1% frequency, primarily located in the largest gene - ORF1a. While viral diversity is low overall, the dominant genetic signatures are likely secondary to population size changes, with some evidence for mild purifying selection throughout the genome. We see little to no evidence for positive selection or ongoing adaptation of SARS-CoV-2 within cell culture or in the primary isolate evaluated in this study. Author SummaryWithin-host variants are critical for addressing molecular evolution questions, identifying selective pressures imposed by vaccine-induced immunity and antiviral therapeutics, and characterizing interhost dynamics, including the stringency and character of transmission bottlenecks. Here, we sequenced SARS-CoV-2 viruses isolated from a human host and from cell culture on three distinct Vero cell lines using Illumina and ONT technologies. We show that SARS-CoV-2 consensus sequences can remain stable through at least two serial passages on Vero 76 cells, suggesting SARS-CoV-2 can be propagated in cell culture in preparation for in-vitro and in-vivo studies without dramatic alterations of its genotype. However, we emphasize the need to deep-sequence viral stocks prior to use in experiments to characterize sub-consensus diversity that may alter outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...