Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22268849

RESUMO

In this report, we use a detailed simulation model to assess and project the COVID-19 epidemic in Florida. The model is a data-driven, stochastic, discrete-time, agent based model with an explicit representation of people and places. Using the model, we find that the omicron variant wave in Florida is likely to cause many more infections than occurred during the delta variant wave. Due to testing limitations and often mild symptoms, however, we anticipate that omicron infections will be underreported compared to delta. We project that reported cases of COVID-19 will continue to grow significantly and peak in early January 2022, and that the number of reported COVID-19 deaths due to omicron may be 1/3 of the total caused by the delta wave.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20225409

RESUMO

Policymakers make decisions about COVID-19 management in the face of considerable uncertainty. We convened multiple modeling teams to evaluate reopening strategies for a mid-sized county in the United States, in a novel process designed to fully express scientific uncertainty while reducing linguistic uncertainty and cognitive biases. For the scenarios considered, the consensus from 17 distinct models was that a second outbreak will occur within 6 months of reopening, unless schools and non-essential workplaces remain closed. Up to half the population could be infected with full workplace reopening; non-essential business closures reduced median cumulative infections by 82%. Intermediate reopening interventions identified no win-win situations; there was a trade-off between public health outcomes and duration of workplace closures. Aggregate results captured twice the uncertainty of individual models, providing a more complete expression of risk for decision-making purposes.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20147843

RESUMO

Comparison of COVID-19 case numbers over time and between locations is complicated by limits to virologic testing confirm SARS-CoV-2 infection, leading to under-reporting of incidence, and by variations in testing capacity between locations and over time. The proportion of tested individuals who have tested positive (test positive proportion, TPP) can potentially be used to qualitatively assess the testing capacity of a location; a high TPP could provide evidence that too few people are tested, leading to more under-reporting. In this study we propose a simple model for testing in a population experiencing an epidemic of COVID-19, and derive an expression for TPP in terms of well-defined parameters in the model, related to testing and presence of other pathogens causing COVID-19 like symptoms. We use simulations to show situations in which the TPP is higher or lower than we expect based on these parameters, and the effect of testing strategies on the TPP. In our simulations, we find in the absence of dramatic shifts of testing practices in time or between spatial locations, the TPP is positively correlated with the incidence of infection. As a corollary, the TPP can be used to distinguish between a decline in confirmed cases due to decline in incidence (in which case TPP should decline) and a decline in confirmed cases due to testing constraints (in which case TPP should remain constant). We show that the proportion of tested individuals who present COVID-19 like symptoms (test symptomatic proportion, TSP) encodes similar information to the TPP but has different relationships with the testing parameters, and can thus provide additional information regarding dynamic changes in TPP and incidence. Finally, we compare data on confirmed cases and TPP from US states. We conjecture why states may have higher or lower TPP than average. We suggest that collection of symptom status and age/risk category of tested individuals can aid interpretation of changes in TPP and increase the utility of TPP in assessing the state of the pandemic in different locations and times. SummaryO_LIKey question: when can we use the proportion of tests that are positive (test positive proportion, TPP) as an indicator of the burden of infection in a state? C_LIO_LIIf testing strategies are broadly similar between locations and over time, the TPP is positively correlated with incidence rates. C_LIO_LIHowever, changes in testing practices over time and between locations can affect the TPP independently of the number of cases. C_LIO_LIMore testing of asymptomatic individuals, e.g. through population-level testing, lowers the TPP. C_LIO_LIWe can identify locations that have a lower or higher TPP than expected, given how many cases they are reporting. C_LIO_LIEfficient transmission increases detected cases exponentially, resulting in large changes in confirmed cases compared to factors that change linearly. C_LIO_LIData that could aid interpretability of the TPP include: age of individuals who test positive and negative, and other data on testing performed in high-prevalence settings; and symptom status of tested individuals. C_LI

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...