Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-471446

RESUMO

There is a growing concern that ongoing evolution of SARS-CoV-2 could lead to variants of concern (VOC) that are capable of avoiding some or all of the multi-faceted immune response generated by both prior infection or vaccination, with the recently described B.1.1.529 (Omicron) VOC being of particular interest. Peripheral blood mononuclear cell samples from PCR-confirmed, recovered COVID-19 convalescent patients (n=30) infected with SARS-CoV-2 in the United States collected in April and May 2020 who possessed at least one or more of six different HLA haplotypes were selected for examination of their anti-SARS-CoV-2 CD8+ T-cell responses using a multiplexed peptide-MHC tetramer staining approach. This analysis examined if the previously identified viral epitopes targeted by CD8+ T-cells in these individuals (n=52 distinct epitopes) are mutated in the newly described Omicron VOC (n=50 mutations). Within this population, only one low-prevalence epitope from the Spike protein restricted to two HLA alleles and found in 2/30 (7%) individuals contained a single amino acid change associated with the Omicron VOC. These data suggest that virtually all individuals with existing anti-SARS-CoV-2 CD8+ T-cell responses should recognize the Omicron VOC, and that SARS-CoV-2 has not evolved extensive T-cell escape mutations at this time. ImportanceThe newly identified Omicron variant of concern contains more mutations than any of the previous variants described to date. In addition, many of the mutations associated with the Omicron variant are found in areas that are likely bound by neutralizing antibodies, suggesting that the first line of immunological defense against COVID-19 may be compromised. However, both natural infection and vaccination develop T-cell based responses, in addition to antibodies. This study examined if the parts of the virus, or epitopes, targeted by the CD8+ T-cell response in thirty individuals who recovered from COVID-19 in 2020 were mutated in the Omicron variant. Only one of 52 epitopes identified in this population contained an amino acid that was mutated in Omicron. These data suggest that the T-cell immune response in previously infected, and most likely vaccinated individuals, should still be effective against Omicron.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21261710

RESUMO

While antibodies provide significant protection from SARS-CoV-2 infection and disease sequelae, the specific attributes of the humoral response that contribute to immunity are incompletely defined. In this study, we employ machine learning to relate characteristics of the polyclonal antibody response raised by natural infection to diverse antibody effector functions and neutralization potency with the goal of generating both accurate predictions of each activity based on antibody response profiles as well as insights into antibody mechanisms of action. To this end, antibody-mediated phagocytosis, cytotoxicity, complement deposition, and neutralization were accurately predicted from biophysical antibody profiles in both discovery and validation cohorts. These predictive models identified SARS-CoV-2-specific IgM as a key predictor of neutralization activity whose mechanistic relevance was supported experimentally by depletion. Validated models of how different aspects of the humoral response relate to antiviral antibody activities suggest desirable attributes to recapitulate by vaccination or other antibody-based interventions.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21251585

RESUMO

This study examined whether CD8+ T-cell responses from COVID-19 convalescent individuals(n=30) potentially maintain recognition of the major SARS-CoV-2 variants. Out of 45 mutations assessed, only one from the B.1.351 Spike overlapped with a low-prevalence CD8+ epitope, suggesting that virtually all anti-SARS-CoV-2 CD8+ T-cell responses should recognize these newly described variants.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21250717

RESUMO

Oral fluid (hereafter saliva) offers a non-invasive sampling method for the detection of SARS-CoV-2 antibodies. However, data comparing performance of salivary tests against commercially-available serologic and neutralizing antibody (nAb) assays are lacking. This study compared the performance of a multiplex salivary SARS-CoV-2 IgG assay targeting antibodies to nucleocapsid (N), receptor binding domain (RBD) and spike (S) antigens to three commercially-available SARS-CoV-2 serology enzyme immunoassays (EIAs) (Ortho Vitros, Euroimmun, and BioRad) and nAb. Paired saliva and plasma samples were collected from 101 eligible COVID-19 convalescent plasma (CCP) donors >14 days since PCR+ confirmed diagnosis. Concordance was evaluated using positive (PPA) and negative (NPA) percent agreement, overall percent agreement (PA), and Cohens kappa coefficient. The range between salivary and plasma EIAs for SARS-CoV-2-specific N was PPA: 54.4-92.1% and NPA: 69.2-91.7%, for RBD was PPA: 89.9-100% and NPA: 50.0-84.6%, and for S was PPA: 50.6-96.6% and NPA: 50.0-100%. Compared to a plasma nAb assay, the multiplex salivary assay PPA ranged from 62.3% (N) and 98.6% (RBD) and NPA ranged from 18.8% (RBD) to 96.9% (S). Combinations of N, RBD, and S and a summary algorithmic index of all three (N/RBD/S) in saliva produced ranges of PPA: 87.6-98.9% and NPA: 50-91.7% with the three EIAs and ranges of PPA: 88.4-98.6% and NPA: 21.9-34.4% with the nAb assay. A multiplex salivary SARS-CoV-2 IgG assay demonstrated comparable performance to three commercially-available plasma EIAs and a nAb assay, and may be a viable alternative to assist in screening CCP donors and monitoring population-based seroprevalence and vaccine antibody response.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20196154

RESUMO

Convalescent plasma has emerged as a promising COVID-19 treatment. However, the humoral factors that contribute to efficacy are poorly understood. This study functionally and phenotypically profiled plasma from eligible convalescent donors. In addition to viral neutralization, convalescent plasma contained antibodies capable of mediating such Fc-dependent functions as complement activation, phagocytosis and antibody-dependent cellular cytotoxicity against SARS-CoV-2. These activities expand the antiviral functions associated with convalescent plasma and together with neutralization efficacy, could be accurately and robustly from antibody phenotypes. These results suggest that high-throughput profiling could be used to screen donors and plasma may provide benefits beyond neutralization.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20139063

RESUMO

Convalescent plasma is currently one of the leading treatments for COVID-19, but there is a paucity of data identifying therapeutic efficacy. A comprehensive analysis of the antibody responses in potential plasma donors and an understanding of the clinical and demographic factors that drive variant antibody responses is needed. Among 126 potential convalescent plasma donors, the humoral immune response was evaluated by a SARS-CoV-2 virus neutralization assay using Vero-E6-TMPRSS2 cells, commercial IgG and IgA ELISA to Spike (S) protein S1 domain (Euroimmun), IgA, IgG and IgM indirect ELISAs to the full-length S or S-receptor binding domain (S-RBD), and an IgG avidity assay. Multiple linear regression and predictive models were utilized to assess the correlations between antibody responses with demographic and clinical characteristics. IgG titers were greater than either IgM or IgA for S1, full length S, and S-RBD in the overall population. Of the 126 plasma samples, 101 (80%) had detectable neutralizing titers. Using neutralization titer as the reference, the sensitivity of the IgG ELISAs ranged between 95-98%, but specificity was only 20-32%. Male sex, older age, and hospitalization with COVID-19 were all consistently associated with increased antibody responses across the serological assays. Neutralizing antibody titers were reduced over time in contrast to overall antibody responses. There was substantial heterogeneity in the antibody response among potential convalescent plasma donors, but sex, age and hospitalization emerged as factors that can be used to identify individuals with a high likelihood of having strong antiviral antibody levels. One Sentence SummaryThere is substantial heterogeneity in the antibody response to SARS-CoV-2 infection, with greater antibody responses being associated with male sex, advancing age, and hospitalization with COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA