Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 290(2012): 20231462, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38052247

RESUMO

A fundamental function of an organ is the ability to perceive mechanical cues. Yet, how this is accomplished is not fully understood, particularly in plant roots. In plants, the majority of studies dealing with the effects of mechanical stress have investigated the aerial parts. However, in natural conditions roots are also subjected to mechanical cues, for example when the root encounters a hard obstacle during its growth or when the soil settles. To investigate root cellular responses to root compression, we developed a microfluidic system associated with a microvalve allowing the delivery of controlled and reproducible mechanical stimulations to the root. In this study, examining plants expressing the R-GECO1-mTurquoise calcium reporter, we addressed the root cell deformation and calcium increase induced by the mechanical stimulation. Lateral pressure applied on the root induced a moderate elastic deformation of root cortical cells and elicited a multicomponent calcium signal at the onset of the pressure pulse, followed by a second one at the release of the pressure. This indicates that straining rather than stressing of tissues is relevant to trigger the calcium signal. Although the intensity of the calcium response increases with the pressure applied, successive pressure stimuli led to a remarkable attenuation of the calcium signal. The calcium elevation was restricted to the tissue under pressure and did not propagate. Strain sensing, spatial restriction and habituation to repetitive stimulation represent the fundamental properties of root signalling in response to local mechanical stimulation. These data linking mechanical properties of root cells to calcium elevation contribute to elucidating the pathway allowing the root to adapt to the mechanical cues generated by the soil.


Assuntos
Arabidopsis , Cálcio/metabolismo , Transdução de Sinais/fisiologia , Solo , Raízes de Plantas
2.
Plant Physiol ; 192(1): 356-369, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36722179

RESUMO

Manganese (Mn) is an essential metal for plant growth. The most important Mn-containing enzyme is the Mn4CaO5 cluster that catalyzes water oxidation in photosystem II (PSII). Mn deficiency primarily affects photosynthesis, whereas Mn excess is generally toxic. Here, we studied Mn excess and deficiency in the liverwort Marchantia polymorpha, an emerging model ideally suited for analysis of metal stress since it accumulates rapidly toxic substances due to the absence of well-developed vascular and radicular systems and a reduced cuticle. We established growth conditions for Mn excess and deficiency and analyzed the metal content in thalli and isolated chloroplasts. In vivo super-resolution fluorescence microscopy and transmission electron microscopy revealed changes in the organization of the thylakoid membrane under Mn excess and deficiency. Both Mn excess and Mn deficiency increased the stacking of the thylakoid membrane. We investigated photosynthetic performance by measuring chlorophyll fluorescence at room temperature and 77 K, measuring P700 absorbance, and studying the susceptibility of thalli to photoinhibition. Nonoptimal Mn concentrations changed the ratio of PSI to PSII. Upon Mn deficiency, higher non-photochemical quenching was observed, electron donation to PSI was favored, and PSII was less susceptible to photoinhibition. Mn deficiency seemed to favor cyclic electron flow around PSI, thereby protecting PSII in high light. The results presented here suggest an important role of Mn in the organization of the thylakoid membrane and photosynthetic electron transport.


Assuntos
Manganês , Marchantia , Cloroplastos , Fotossíntese , Tilacoides , Transporte de Elétrons , Complexo de Proteína do Fotossistema II , Clorofila , Complexo de Proteína do Fotossistema I , Luz
3.
Plant Cell ; 35(1): 318-335, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36409008

RESUMO

Nitrate is a major nutrient and osmoticum for plants. To deal with fluctuating nitrate availability in soils, plants store this nutrient in their vacuoles. Chloride channel a (CLCa), a 2NO3-/1H+ exchanger localized to the vacuole in Arabidopsis (Arabidopsis thaliana), ensures this storage process. CLCa belongs to the CLC family, which includes anion/proton exchangers and anion channels. A mutation in a glutamate residue conserved across CLC exchangers is likely responsible for the conversion of exchangers to channels. Here, we show that CLCa with a mutation in glutamate 203 (E203) behaves as an anion channel in its native membrane. We introduced the CLCaE203A point mutation to investigate its physiological importance into the Arabidopsis clca knockout mutant. These CLCaE203A mutants displayed a growth deficit linked to the disruption of water homeostasis. Additionally, CLCaE203A expression failed to complement the defect in nitrate accumulation of clca and favored higher N-assimilation at the vegetative stage. Further analyses at the post-flowering stages indicated that CLCaE203A expression results in an increase in N uptake allocation to seeds, leading to a higher nitrogen use efficiency compared to the wild-type. Altogether, these results point to the critical function of the CLCa exchanger on the vacuole for plant metabolism and development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Transportadores de Nitrato , Nitratos/metabolismo , Prótons , Vacúolos/metabolismo , Nitrogênio/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ânions/metabolismo , Plantas/metabolismo , Mutação/genética , Regulação da Expressão Gênica de Plantas
4.
New Phytol ; 236(1): 283-295, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35801827

RESUMO

Root-knot nematodes (RKNs) are root endoparasites that induce the dedifferentiation of a few root cells and the reprogramming of their gene expression to generate giant hypermetabolic feeding cells. We identified two microRNA families, miR408 and miR398, as upregulated in Arabidopsis thaliana and Solanum lycopersicum roots infected by RKNs. In plants, the expression of these two conserved microRNA families is known to be activated by the SPL7 transcription factor in response to copper starvation. By combining functional approaches, we deciphered the network involving these microRNAs, their regulator and their targets. MIR408 expression was located within nematode-induced feeding cells like its regulator SPL7 and was regulated by copper. Moreover, infection assays with mir408 and spl7 knockout mutants or lines expressing targets rendered resistant to cleavage by miR398 demonstrated the essential role of the SPL7/MIR408/MIR398 module in the formation of giant feeding cells. Our findings reveal how perturbation of plant copper homeostasis, via the SPL7/MIR408/MIR398 module, modulates the development of nematode-induced feeding cells.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , MicroRNAs , Tylenchoidea , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cobre/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , MicroRNAs/metabolismo , Raízes de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Tylenchoidea/fisiologia
5.
Curr Opin Plant Biol ; 68: 102252, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35772372

RESUMO

The study of mechanosensitive channels (MS) in living organisms has progressed considerably over the past two decades. The understanding of their roles in mechanosensation and mechanotransduction was consecrated by the awarding of the Nobel Prize in 2021 to A. Patapoutian for his discoveries on the role of MS channels in mechanoperception in humans. In this review, we first summarize the fundamental properties of MS channels and their mode of operation. Then in a second step, we provide an update on the knowledge on the families of MS channels identified in plants and the roles and functions that have been attributed to them.


Assuntos
Canais Iônicos , Mecanotransdução Celular , Humanos , Canais Iônicos/metabolismo , Mecanotransdução Celular/fisiologia , Plantas/metabolismo
6.
Mol Biol Evol ; 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35700212

RESUMO

Transition metals are essential for a wealth of metabolic reactions, but their concentrations need to be tightly controlled across cells and cell compartments, as metal excess or imbalance has deleterious effects. Metal homeostasis is achieved by a combination of metal transport across membranes and metal binding to a variety of molecules. Gene duplication is a key process in evolution, as emergence of advantageous mutations on one of the copies can confer a new function. Here, we report that the poplar genome contains two paralogues encoding NRAMP3 metal transporters localized in tandem. All Populus species analyzed had two copies of NRAMP3, whereas only one could be identified in Salix species indicating that duplication occurred when the two genera separated. Both copies are under purifying selection and encode functional transporters, as shown by expression in the yeast heterologous expression system. However, genetic complementation revealed that only one of the paralogues has retained the original function in release of metals stored in the vacuole previously characterized in A. thaliana. Confocal imaging showed that the other copy has acquired a distinct localization to the Trans Golgi Network (TGN). Expression in poplar suggested that the copy of NRAMP3 localized on the TGN has a novel function in the control of cell-to-cell transport of manganese. This work provides a clear case of neo-functionalization through change in the subcellular localization of a metal transporter as well as evidence for the involvement of the secretory pathway in cell-to-cell transport of manganese.

7.
J Exp Bot ; 73(6): 1789-1799, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35134869

RESUMO

The provision of sustainable, sufficient, and nutritious food to the growing population is a major challenge for agriculture and the plant research community. In this respect, the mineral micronutrient content of food crops deserves particular attention. Micronutrient deficiencies in cultivated soils and plants are a global problem that adversely affects crop production and plant nutritional value, as well as human health and well-being. In this review, we call for awareness of the importance and relevance of micronutrients in crop production and quality. We stress the need for better micronutrient nutrition in human populations, not only in developing but also in developed nations, and describe strategies to identify and characterize new varieties with high micronutrient content. Furthermore, we explain how adequate nutrition of plants with micronutrients impacts metabolic functions and the capacity of plants to express tolerance mechanisms against abiotic and biotic constraints. Finally, we provide a brief overview and a critical discussion on current knowledge, future challenges, and specific technological needs for research on plant micronutrient homeostasis. Research in this area is expected to foster the sustainable development of nutritious and healthy food crops for human consumption.


Assuntos
Micronutrientes , Oligoelementos , Agricultura/métodos , Produtos Agrícolas/metabolismo , Alimentos Fortificados , Homeostase , Humanos , Micronutrientes/metabolismo
8.
Plant Signal Behav ; 16(11): 1975088, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34514930

RESUMO

Iron (Fe) is involved in multiple processes that contribute to the maintenance of the cellular homeostasis of all living beings. In photosynthetic organisms, Fe is notably required for photosynthesis. Although iron is generally abundant in the environment, it is frequently poorly bioavailable. This review focuses on the molecular strategies that photosynthetic organisms have evolved to optimize iron acquisition, using Arabidopsis thaliana, rice (Oryza sativa), and some unicellular algae as models. Non-graminaceous plants, including Arabidopsis, take up iron from the soil by an acidification-reduction-transport process (strategy I) requiring specific proteins that were recently shown to associate in a dedicated complex. On the other hand, graminaceous plants, such as rice, use the so-called strategy II to acquire iron, which relies on the uptake of Fe3+ chelated by phytosiderophores that are secreted by the plant into the rhizosphere. However, apart these main strategies, accessory mechanisms contribute to robust iron uptake in both Arabidopsis and rice. Unicellular algae combine reductive and non-reductive mechanisms for iron uptake and present important specificities compared to land plants. Since the majority of the molecular actors required for iron acquisition in algae are not conserved in land plants, questions arise about the evolution of the Fe uptake processes upon land colonization.


Assuntos
Arabidopsis/metabolismo , Cianobactérias/metabolismo , Ferro/metabolismo , Redes e Vias Metabólicas , Oryza/metabolismo , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Fotossíntese
10.
Environ Sci Pollut Res Int ; 28(31): 42722-42736, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33821443

RESUMO

In North Africa, barley (Hordeum vulgare L) is the second most cultivated cereal. In Tunisia, barley is cultivated in mining areas with possible Cd soil contamination. The accumulation of Cd was studied in the 36 most cultivated North African barley cultivars cultured during 6 months on control soil and on soil containing 10 ppm of Cd. Cadmium did not affect germination and morphology in any cultivar. However, Cd induced variable effects on the biomass according to the cultivar. The cultivar Lemsi was the most sensitive one and Gisa 127 the most tolerant to Cd. The spike morphology did not show any differences between control and Cd-treated plants. The number of grains per spike and the weight of kernels were differently affected by Cd. On this basis, we identified Manel, Temassine, Giza 130, and Firdaws as the most tolerant cultivars and Raihane, Giza 123, Adrar, and Amira as the most sensitive ones. Cd accumulated at a higher concentration in straw than in the grains, but for both organs, we observed a significant intraspecific variability. In the straw, Lemsi and Massine showed the highest Cd concentration, while the lowest concentration was recorded in Temassine. In the kernels, Amalou showed the highest Cd concentration, 14 µgg-1 of dry weight (DW), but the lowest Cd concentration was 1.7 µg g-1 DW in Kebelli. Based on the official allowable limit of Cd in the grain, all cultivars represent a potential risk when cultivated on soil contaminated with 10 ppm Cd. The molecular and physiological basis responsible for the differences in Cd tolerance and accumulation among barley cultivars will require more investigations.


Assuntos
Hordeum , Poluentes do Solo , Cádmio/análise , Solo , Poluentes do Solo/análise , Tunísia
13.
New Phytol ; 229(2): 994-1006, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32583438

RESUMO

The Anthropocene epoch is associated with the spreading of metals in the environment increasing oxidative and genotoxic stress on organisms. Interestingly, c. 520 plant species growing on metalliferous soils acquired the capacity to accumulate and tolerate a tremendous amount of nickel in their shoots. The wide phylogenetic distribution of these species suggests that nickel hyperaccumulation evolved multiple times independently. However, the exact nature of these mechanisms and whether they have been recruited convergently in distant species is not known. To address these questions, we have developed a cross-species RNA-Seq approach combining differential gene expression analysis and cluster of orthologous group annotation to identify genes linked to nickel hyperaccumulation in distant plant families. Our analysis reveals candidate orthologous genes encoding convergent function involved in nickel hyperaccumulation, including the biosynthesis of specialized metabolites and cell wall organization. Our data also point out that the high expression of IREG/Ferroportin transporters recurrently emerged as a mechanism involved in nickel hyperaccumulation in plants. We further provide genetic evidence in the hyperaccumulator Noccaea caerulescens for the role of the NcIREG2 transporter in nickel sequestration in vacuoles. Our results provide molecular tools to better understand the mechanisms of nickel hyperaccumulation and study their evolution in plants.


Assuntos
Brassicaceae , Níquel , Brassicaceae/genética , Filogenia , RNA-Seq , Solo
14.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33372153

RESUMO

Plants spend most of their life oscillating around 1-3 Hz due to the effect of the wind. Therefore, stems and foliage experience repetitive mechanical stresses through these passive movements. However, the mechanism of the cellular perception and transduction of such recurring mechanical signals remains an open question. Multimeric protein complexes forming mechanosensitive (MS) channels embedded in the membrane provide an efficient system to rapidly convert mechanical tension into an electrical signal. So far, studies have mostly focused on nonoscillatory stretching of these channels. Here, we show that the plasma-membrane MS channel MscS-LIKE 10 (MSL10) from the model plant Arabidopsis thaliana responds to pulsed membrane stretching with rapid activation and relaxation kinetics in the range of 1 s. Under sinusoidal membrane stretching MSL10 presents a greater activity than under static stimulation. We observed this amplification mostly in the range of 0.3-3 Hz. Above these frequencies the channel activity is very close to that under static conditions. With a localization in aerial organs naturally submitted to wind-driven oscillations, our results suggest that the MS channel MSL10, and by extension MS channels sharing similar properties, represents a molecular component allowing the perception of oscillatory mechanical stimulations by plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Mecanotransdução Celular/fisiologia , Proteínas de Membrana/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Membrana Celular/fisiologia , Canais Iônicos/metabolismo , Transporte de Íons , Mecanorreceptores/metabolismo , Proteínas de Membrana/fisiologia , Plantas Geneticamente Modificadas/metabolismo , Transdução de Sinais
15.
Proc Natl Acad Sci U S A ; 117(26): 15343-15353, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32546525

RESUMO

Ion transporters are key players of cellular processes. The mechanistic properties of ion transporters have been well elucidated by biophysical methods. Meanwhile, the understanding of their exact functions in cellular homeostasis is limited by the difficulty of monitoring their activity in vivo. The development of biosensors to track subtle changes in intracellular parameters provides invaluable tools to tackle this challenging issue. AtCLCa (Arabidopsis thaliana Chloride Channel a) is a vacuolar NO3-/H+ exchanger regulating stomata aperture in Athaliana Here, we used a genetically encoded biosensor, ClopHensor, reporting the dynamics of cytosolic anion concentration and pH to monitor the activity of AtCLCa in vivo in Arabidopsis guard cells. We first found that ClopHensor is not only a Cl- but also, an NO3- sensor. We were then able to quantify the variations of NO3- and pH in the cytosol. Our data showed that AtCLCa activity modifies cytosolic pH and NO3- In an AtCLCa loss of function mutant, the cytosolic acidification triggered by extracellular NO3- and the recovery of pH upon treatment with fusicoccin (a fungal toxin that activates the plasma membrane proton pump) are impaired, demonstrating that the transport activity of this vacuolar exchanger has a profound impact on cytosolic homeostasis. This opens a perspective on the function of intracellular transporters of the Chloride Channel (CLC) family in eukaryotes: not only controlling the intraorganelle lumen but also, actively modifying cytosolic conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Canais de Cloreto/metabolismo , Citosol/química , Homeostase/fisiologia , Nitratos/química , Proteínas de Arabidopsis/genética , Canais de Cloreto/genética , Citosol/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Concentração de Íons de Hidrogênio , Nitratos/metabolismo
16.
Biochem J ; 477(1): 259-274, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31950999

RESUMO

To ensure the success of the new generation in annual species, the mother plant transfers a large proportion of the nutrients it has accumulated during its vegetative life to the next generation through its seeds. Iron (Fe) is required in large amounts to provide the energy and redox power to sustain seedling growth. However, free Fe is highly toxic as it leads to the generation of reactive oxygen species. Fe must, therefore, be tightly bound to chelating molecules to allow seed survival for long periods of time without oxidative damage. Nevertheless, when conditions are favorable, the seed's Fe stores have to be readily remobilized to achieve the transition toward active photosynthesis before the seedling becomes able to take up Fe from the environment. This is likely critical for the vigor of the young plant. Seeds constitute an important dietary source of Fe, which is essential for human health. Understanding the mechanisms of Fe storage in seeds is a key to improve their Fe content and availability in order to fight Fe deficiency. Seed longevity, germination efficiency and seedling vigor are also important traits that may be affected by the chemical form under which Fe is stored. In this review, we summarize the current knowledge on seed Fe loading during development, long-term storage and remobilization upon germination. We highlight how this knowledge may help seed Fe biofortification and discuss how Fe storage may affect the seed quality and germination efficiency.


Assuntos
Arabidopsis/metabolismo , Germinação/fisiologia , Ferro/metabolismo , Plântula/metabolismo , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia
17.
Curr Opin Plant Biol ; 53: 57-64, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31783322

RESUMO

During development, tissues are submitted to high variation of compression and tension forces. The roles of the cell wall, the cytoskeleton, the turgor pressure and the cell geometry during this process have received due attention. In contrast, apart from its role in the establishment of turgor pressure, the involvement of the plasma membrane as a transducer of mechanical forces during development has been under studied. Force-gated (FG) or Mechanosensitive (MS) ion channels embedded in the bilayer represent 'per se' archetypal mechanosensor able to directly and instantaneously transduce membrane forces into electrical and calcium signals. We discuss here how their fine-tuning, combined with their ability to detect micro-curvature and local membrane tension, allows FG channels to transduce mechanical cues into developmental signals.


Assuntos
Cálcio , Canais Iônicos , Membrana Celular , Citoesqueleto , Mecanotransdução Celular
18.
Cells ; 8(11)2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31726766

RESUMO

Nutrient recycling and mobilization from organ to organ all along the plant lifespan is essential for plant survival under changing environments. Nutrient remobilization to the seeds is also essential for good seed production. In this review, we summarize the recent advances made to understand how plants manage nutrient remobilization from senescing organs to sink tissues and what is the contribution of autophagy in this process. Plant engineering manipulating autophagy for better yield and plant tolerance to stresses will be presented.


Assuntos
Nutrientes/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Autofagia , Engenharia Metabólica , Desenvolvimento Vegetal , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Estresse Fisiológico
19.
J Exp Bot ; 70(3): 859-869, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30395253

RESUMO

Micronutrient deficiencies affect a large part of the world's population. These deficiencies are mostly due to the consumption of grains with insufficient content of iron (Fe) or zinc (Zn). Both de novo uptake by roots and recycling from leaves may provide seeds with nutrients. Autophagy, which is a conserved mechanism for nutrient recycling in eukaryotes, was shown to be involved in nitrogen remobilization to seeds. Here, we have investigated the role of this mechanism in micronutrient translocation to seeds. We found that Arabidopsis thaliana plants impaired in autophagy display defects in nutrient remobilization to seeds. In the atg5-1 mutant, which is completely defective in autophagy, the efficiency of Fe translocation from vegetative organs to seeds was severely decreased even when Fe was provided during seed formation. Combining atg5-1 with the sid2 mutation that counteracts premature senescence associated with autophagy deficiency and using 57Fe pulse labeling, we propose a two-step mechanism in which Fe taken up de novo during seed formation is first accumulated in vegetative organs and subsequently remobilized to seeds. Finally, we show that translocation of Zn and manganese (Mn) to seeds is also dependent on autophagy. Fine-tuning autophagy during seed formation opens up new possibilities to improve micronutrient remobilization to seeds.


Assuntos
Arabidopsis/metabolismo , Autofagia , Ferro/metabolismo , Sementes/metabolismo , Arabidopsis/genética , Autofagia/genética , Transporte Biológico , Manganês/metabolismo , Micronutrientes/metabolismo , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...