Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Syst Biol ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38189575

RESUMO

Analysis of phylogenetic trees has become an essential tool in epidemiology. Likelihood-based methods fit models to phylogenies to draw inferences about the phylodynamics and history of viral transmission. How- ever, these methods are often computationally expensive, which limits the complexity and realism of phylodynamic models and makes them ill-suited for informing policy decisions in real-time during rapidly developing outbreaks. Likelihood-free methods using deep learning are pushing the boundaries of inference beyond these constraints. In this paper, we extend, compare and contrast a recently developed deep learning method for likelihood-free infer- ence from trees. We trained multiple deep neural networks using phylogenies from simulated outbreaks that spread among five locations and found they achieve close to the same levels of accuracy as Bayesian inference under the true simulation model. We compared robustness to model misspecification of a trained neural network to that of a Bayesian method. We found that both models had comparable performance, converging on similar biases. We also implemented a method of uncertainty quantification called conformalized quantile regression which we demonstrate has similar patterns of sensitivity to model misspecification as Bayesian highest posterior density (HPD) and greatly overlap with HPDs, but have lower precision (more conservative). Fi- nally, we trained and tested a neural network against phylogeographic data from a recent study of the SARS-Cov-2 pandemic in Europe and obtained similar estimates of region-specific epidemiological parameters and the loca- tion of the common ancestor in Europe. Along with being as accurate and robust as likelihood-based methods, our trained neural networks are on aver- age over 3 orders of magnitude faster after training. Our results support the notion that neural networks can be trained with simulated data to accurately mimic the good and bad statistical properties of the likelihood functions of generative phylogenetic models.

2.
Proc Natl Acad Sci U S A ; 121(3): e2312380120, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38215185

RESUMO

Across internally fertilising species, males transfer ejaculate proteins that trigger wide-ranging changes in female behaviour and physiology. Much theory has been developed to explore the drivers of ejaculate protein evolution. The accelerating availability of high-quality genomes now allows us to test how these proteins are evolving at fine taxonomic scales. Here, we use genomes from 264 species to chart the evolutionary history of Sex Peptide (SP), a potent regulator of female post-mating responses in Drosophila melanogaster. We infer that SP first evolved in the Drosophilinae subfamily and has since followed markedly different evolutionary trajectories in different lineages. Outside of the Sophophora-Lordiphosa, SP exists largely as a single-copy gene with independent losses in several lineages. Within the Sophophora-Lordiphosa, the SP gene family has repeatedly and independently expanded. Up to seven copies, collectively displaying extensive sequence variation, are present in some species. Despite these changes, SP expression remains restricted to the male reproductive tract. Alongside, we document considerable interspecific variation in the presence and morphology of seminal microcarriers that, despite the critical role SP plays in microcarrier assembly in D. melanogaster, appears to be independent of changes in the presence/absence or sequence of SP. We end by providing evidence that SP's evolution is decoupled from that of its receptor, Sex Peptide Receptor, in which we detect no evidence of correlated diversifying selection. Collectively, our work describes the divergent evolutionary trajectories that a novel gene has taken following its origin and finds a surprisingly weak coevolutionary signal between a supposedly sexually antagonistic protein and its receptor.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Feminino , Masculino , Evolução Biológica , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Reprodução/genética , Comportamento Sexual Animal
3.
bioRxiv ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37425821

RESUMO

Across internally fertilising species, males transfer ejaculate proteins that trigger wide-ranging changes in female behaviour and physiology. Much theory has been developed to explore the drivers of ejaculate protein evolution. The accelerating availability of high-quality genomes now allows us to test how these proteins are evolving at fine taxonomic scales. Here, we use genomes from 264 species to chart the evolutionary history of Sex Peptide (SP), a potent regulator of female post-mating responses in Drosophila melanogaster. We infer that SP first evolved in the Drosophilinae subfamily and has followed markedly different evolutionary trajectories in different lineages. Outside of the Sophophora-Lordiphosa, SP exists largely as a single-copy gene with independent losses in several lineages. Within the Sophophora-Lordiphosa, the SP gene family has repeatedly and independently expanded. Up to seven copies, collectively displaying extensive sequence variation, are present in some species. Despite these changes, SP expression remains restricted to the male reproductive tract. Alongside, we document considerable interspecific variation in the presence and morphology of seminal microcarriers that, despite the critical role SP plays in microcarrier assembly in D. melanogaster, appear to be independent of changes in the presence/absence or sequence of SP. We end by providing evidence that SP's evolution is decoupled from that of its receptor, SPR, in which we detect no evidence of correlated diversifying selection. Collectively, our work describes the divergent evolutionary trajectories that a novel gene has taken following its origin and finds a surprisingly weak coevolutionary signal between a supposedly sexually antagonistic protein and its receptor.

4.
BMC Genomics ; 23(1): 641, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36076188

RESUMO

BACKGROUND: Maternal gene products supplied to the egg during oogenesis drive the earliest events of development in all metazoans. After the initial stages of embryogenesis, maternal transcripts are degraded as zygotic transcription is activated; this is known as the maternal to zygotic transition (MZT). Recently, it has been shown that the expression of maternal and zygotic transcripts have evolved in the Drosophila genus over the course of 50 million years. However, the extent of natural variation of maternal and zygotic transcripts within a species has yet to be determined. We asked how the maternal and zygotic pools of mRNA vary within and between populations of D. melanogaster. In order to maximize sampling of genetic diversity, African lines of D. melanogaster originating from Zambia as well as DGRP lines originating from North America were chosen for transcriptomic analysis. RESULTS: Generally, we find that maternal transcripts are more highly conserved, and zygotic transcripts evolve at a higher rate. We find that there is more within-population variation in transcript abundance than between populations and that expression variation is highest post- MZT between African lines. CONCLUSIONS: Determining the natural variation of gene expression surrounding the MZT in natural populations of D. melanogaster gives insight into the extent of how a tightly regulated process may vary within a species, the extent of developmental constraint at both stages and on both the maternal and zygotic genomes, and reveals expression changes allowing this species to adapt as it spread across the world.


Assuntos
Drosophila melanogaster , Regulação da Expressão Gênica no Desenvolvimento , Animais , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Desenvolvimento Embrionário/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Zigoto/metabolismo
5.
Dev Genes Evol ; 232(5-6): 89-102, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35939093

RESUMO

The origin, diversification, and secondary loss of sexually dimorphic characters are common in animal evolution. In some cases, structurally and functionally similar traits have evolved independently in multiple lineages. Prominent examples of such traits include the male-specific grasping structures that develop on the front legs of many dipteran insects. In this report, we describe the evolution and development of one of these structures, the male-specific "sex brush." The sex brush is composed of densely packed, irregularly arranged modified bristles and is found in several distantly related lineages in the family Drosophilidae. Phylogenetic analysis using 250 genes from over 200 species provides modest support for a single origin of the sex brush followed by many secondary losses; however, independent origins of the sex brush cannot be ruled out completely. We show that sex brushes develop in very similar ways in all brush-bearing lineages. The dense packing of brush hairs is explained by the specification of bristle precursor cells at a near-maximum density permitted by the lateral inhibition mechanism, as well as by the reduced size of the surrounding epithelial cells. In contrast to the female and the ancestral male condition, where bristles are arranged in stereotypical, precisely spaced rows, cell migration does not contribute appreciably to the formation of the sex brush. The complex phylogenetic history of the sex brush can make it a valuable model for investigating coevolution of sex-specific morphology and mating behavior.


Assuntos
Evolução Biológica , Drosophilidae , Animais , Masculino , Feminino , Filogenia , Drosophilidae/genética , Drosophila melanogaster/genética , Fenótipo , Caracteres Sexuais
6.
Evolution ; 76(9): 2089-2104, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35841603

RESUMO

Animal evolution is characterized by frequent turnover of sexually dimorphic traits-new sex-specific characters are gained, and some ancestral sex-specific characters are lost, in many lineages. In insects, sexual differentiation is predominantly cell autonomous and depends on the expression of the doublesex (dsx) transcription factor. In most cases, cells that transcribe dsx have the potential to undergo sex-specific differentiation, while those that lack dsx expression do not. Consistent with this mode of development, comparative research has shown that the origin of new sex-specific traits can be associated with the origin of new spatial domains of dsx expression. In this report, we examine the opposite situation-a secondary loss of the sex comb, a male-specific grasping structure that develops on the front legs of some drosophilid species. We show that while the origin of the sex comb is linked to an evolutionary gain of dsx expression in the leg, sex comb loss in a newly identified species of Lordiphosa (Drosophilidae) is associated with a secondary loss of dsx expression. We discuss how the developmental control of sexual dimorphism affects the mechanisms by which sex-specific traits can evolve.


Assuntos
Proteínas de Drosophila , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Caracteres Sexuais , Diferenciação Sexual
8.
Elife ; 102021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34279216

RESUMO

Over 100 years of studies in Drosophila melanogaster and related species in the genus Drosophila have facilitated key discoveries in genetics, genomics, and evolution. While high-quality genome assemblies exist for several species in this group, they only encompass a small fraction of the genus. Recent advances in long-read sequencing allow high-quality genome assemblies for tens or even hundreds of species to be efficiently generated. Here, we utilize Oxford Nanopore sequencing to build an open community resource of genome assemblies for 101 lines of 93 drosophilid species encompassing 14 species groups and 35 sub-groups. The genomes are highly contiguous and complete, with an average contig N50 of 10.5 Mb and greater than 97% BUSCO completeness in 97/101 assemblies. We show that Nanopore-based assemblies are highly accurate in coding regions, particularly with respect to coding insertions and deletions. These assemblies, along with a detailed laboratory protocol and assembly pipelines, are released as a public resource and will serve as a starting point for addressing broad questions of genetics, ecology, and evolution at the scale of hundreds of species.


Assuntos
Drosophila melanogaster/genética , Tamanho do Genoma , Genômica/métodos , Animais , Linhagem Celular , Cromossomos , Biologia Computacional/métodos , Feminino , Genoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Nanoporos
9.
Proc Natl Acad Sci U S A ; 117(32): 19339-19346, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32709743

RESUMO

Transcriptomes are key to understanding the relationship between genotype and phenotype. The ability to infer the expression state (active or inactive) of genes in the transcriptome offers unique benefits for addressing this issue. For example, qualitative changes in gene expression may underly the origin of novel phenotypes, and expression states are readily comparable between tissues and species. However, inferring the expression state of genes is a surprisingly difficult problem, owing to the complex biological and technical processes that give rise to observed transcriptomic datasets. Here, we develop a hierarchical Bayesian mixture model that describes this complex process and allows us to infer expression state of genes from replicate transcriptomic libraries. We explore the statistical behavior of this method with analyses of simulated datasets-where we demonstrate its ability to correctly infer true (known) expression states-and empirical-benchmark datasets, where we demonstrate that the expression states inferred from RNA-sequencing (RNA-seq) datasets using our method are consistent with those based on independent evidence. The power of our method to correctly infer expression states is generally high and remarkably, approaches the maximum possible power for this inference problem. We present an empirical analysis of primate-brain transcriptomes, which identifies genes that have a unique expression state in humans. Our method is implemented in the freely available R package zigzag.


Assuntos
Primatas/genética , Animais , Teorema de Bayes , Perfilação da Expressão Gênica/métodos , Humanos , Primatas/metabolismo , Análise de Sequência de RNA , Transcriptoma
10.
Mol Biol Evol ; 36(3): 447-457, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30590689

RESUMO

Vertebrates have four classes of cone opsin genes derived from two rounds of genome duplication. These are short wavelength sensitive 1(SWS1), short wavelength sensitive 2(SWS2), medium wavelength sensitive (RH2), and long wavelength sensitive (LWS). Teleosts had another genome duplication at their origin and it is believed that only one of each cone opsin survived the ancestral teleost duplication event. We tested this by examining the retinal cones of a basal teleost group, the osteoglossomorphs. Surprisingly, this lineage has lost the typical vertebrate green-sensitive RH2 opsin gene and, instead, has a duplicate of the LWS opsin that is green sensitive. This parallels the situation in mammalian evolution in which the RH2 opsin gene was lost in basal mammals and a green-sensitive opsin re-evolved in Old World, and independently in some New World, primates from an LWS opsin gene. Another group of fish, the characins, possess green-sensitive LWS cones. Phylogenetic analysis shows that the evolution of green-sensitive LWS opsins in these two teleost groups derives from a common ancestral LWS opsin that acquired green sensitivity. Additionally, the nocturnally active African weakly electric fish (Mormyroideae), which are osteoglossomorphs, show a loss of the SWS1 opsin gene. In comparison with the independently evolved nocturnally active South American weakly electric fish (Gymnotiformes) with a functionally monochromatic LWS opsin cone retina, the presence of SWS2, LWS, and LWS2 cone opsins in mormyrids suggests the possibility of color vision.


Assuntos
Opsinas dos Cones/genética , Peixe Elétrico/genética , Sequência de Aminoácidos , Animais , Opsinas dos Cones/química , Células Fotorreceptoras de Vertebrados/química , Filogenia , Sintenia
11.
PLoS Biol ; 16(3): e2004892, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29584718

RESUMO

Most weakly electric fish navigate and communicate by sensing electric signals generated by their muscle-derived electric organs. Adults of one lineage (Apteronotidae), which discharge their electric organs in excess of 1 kHz, instead have an electric organ derived from the axons of specialized spinal neurons (electromotorneurons [EMNs]). EMNs fire spontaneously and are the fastest-firing neurons known. This biophysically extreme phenotype depends upon a persistent sodium current, the molecular underpinnings of which remain unknown. We show that a skeletal muscle-specific sodium channel gene duplicated in this lineage and, within approximately 2 million years, began expressing in the spinal cord, a novel site of expression for this isoform. Concurrently, amino acid replacements that cause a persistent sodium current accumulated in the regions of the channel underlying inactivation. Therefore, a novel adaptation allowing extreme neuronal firing arose from the duplication, change in expression, and rapid sequence evolution of a muscle-expressing sodium channel gene.


Assuntos
Peixe Elétrico/genética , Evolução Molecular , Canais de Sódio Disparados por Voltagem/química , Substituição de Aminoácidos , Comunicação Animal , Animais , Órgão Elétrico/fisiologia , Duplicação Gênica , Perfilação da Expressão Gênica , Modelos Moleculares , Domínios Proteicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Análise de Sequência de Proteína , Medula Espinal/metabolismo , Canais de Sódio Disparados por Voltagem/genética
12.
Genetics ; 202(2): 765-74, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26661114

RESUMO

Dosage-balance selection preserves functionally redundant duplicates (paralogs) at the optimum for their combined expression. Here we present a model of the dynamics of duplicate genes coevolving under dosage-balance selection. We call this the compensatory drift model. Results show that even when strong dosage-balance selection constrains total expression to the optimum, expression of each duplicate can diverge by drift from its original level. The rate of divergence slows as the strength of stabilizing selection, the size of the mutation effect, and/or the size of the population increases. We show that dosage-balance selection impedes neofunctionalization early after duplication but can later facilitate it. We fit this model to data from sodium channel duplicates in 10 families of teleost fish; these include two convergent lineages of electric fish in which one of the duplicates neofunctionalized. Using the model, we estimated the strength of dosage-balance selection for these genes. The results indicate that functionally redundant paralogs still may undergo radical functional changes after a prolonged period of compensatory drift.


Assuntos
Evolução Molecular , Dosagem de Genes , Duplicação Gênica , Genes Duplicados , Deriva Genética , Algoritmos , Animais , Peixes/classificação , Peixes/genética , Modelos Genéticos , Canais de Sódio/genética
13.
Mol Biol Evol ; 31(8): 1941-55, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24782440

RESUMO

Ion channels have played a substantial role in the evolution of novel traits across all of the domains of life. A fascinating example of a novel adaptation is the convergent evolution of electric organs in the Mormyroid and Gymnotiform electric fishes. The regulated currents that flow through ion channels directly generate the electrical signals which have evolved in these fish. Here, we investigated how the expression evolution of two sodium channel paralogs (Scn4aa and Scn4ab) influenced their convergent molecular evolution following the teleost-specific whole-genome duplication. We developed a reliable assay to accurately measure the expression stoichiometry of these genes and used this technique to analyze relative expression of the duplicate genes in a phylogenetic context. We found that before a major shift in expression from skeletal muscle and neofunctionalization in the muscle-derived electric organ, Scn4aa was first downregulated in the ancestors of both electric lineages. This indicates that underlying the convergent evolution of this gene, there was a greater propensity toward neofunctionalization due to its decreased expression relative to its paralog Scn4ab. We investigated another derived muscle tissue, the sonic organ of Porichthys notatus, and show that, as in the electric fishes, Scn4aa again shows a radical shift in expression away from the ancestral muscle cells into the evolutionarily novel muscle-derived tissue. This study presents evidence that expression downregulation facilitates neofunctionalization after gene duplication, a pattern that may often set the stage for novel trait evolution after gene duplication.


Assuntos
Proteínas de Peixes/genética , Gimnotiformes/genética , Músculo Esquelético/metabolismo , Canais de Sódio Disparados por Voltagem/genética , Animais , Evolução Molecular , Duplicação Gênica , Regulação da Expressão Gênica , Gimnotiformes/classificação , Modelos Genéticos , Filogenia , Seleção Genética
14.
Front Mol Neurosci ; 7: 15, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24639627

RESUMO

Neuronal resting potential can tune the excitability of neural networks, affecting downstream behavior. Sodium leak channels (NALCN) play a key role in rhythmic behaviors by helping set, or subtly changing neuronal resting potential. The full complexity of these newly described channels is just beginning to be appreciated, however. NALCN channels can associate with numerous subunits in different tissues and can be activated by several different peptides and second messengers. We recently showed that NALCN channels are closely related to fungal calcium channels, which they functionally resemble. Here, we use this relationship to predict a family of NALCN-associated proteins in animals on the basis of homology with the yeast protein Mid1, the subunit of the yeast calcium channel. These proteins all share a cysteine-rich region that is necessary for Mid1 function in yeast. We validate this predicted association by showing that the Mid1 homolog in Drosophila, encoded by the CG33988 gene, is coordinately expressed with NALCN, and that knockdown of either protein creates identical phenotypes in several behaviors associated with NALCN function. The relationship between Mid1 and leak channels has therefore persisted over a billion years of evolution, despite drastic changes to both proteins and the organisms in which they exist.

15.
Anal Biochem ; 417(2): 165-73, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21741947

RESUMO

Cysteine residues in proteins are targets of numerous post-translational modifications and play important roles in protein structure and enzymatic function. Consequently, understanding the full biochemistry of proteins depends on determining the oxidation state and availability of the residues to be modified. We have developed a highly sensitive assay that accurately determines the number of unmodified cysteine residues in GST-fusion proteins. Only picomoles of protein are required for each reaction, which are carried out in 96-well glutathione-coated plates. Free unmodified cysteine residues are labeled and quantified using biotin and HRP-conjugated streptavidin. Our assay can be used to quantify reactions targeting sulfhydryl groups in proteins. We demonstrate this assay using full-length and truncation mutants of the SNARE proteins syntaxin1A, SNAP-25B, and synaptobrevin2, which have 0-4 cysteines. We are able to accurately determine the number of cysteine residues in each protein and follow the modification of these cysteines by oxidation and reaction with NEM (N-ethylmaleimide). This assay is as simple as running an ELISA or Western blot and, because of its high resolution, should allow detailed analysis of the chemistry of cysteine residues in proteins.


Assuntos
Cisteína/análise , Escherichia coli/enzimologia , Glutationa Transferase/química , Medições Luminescentes , Proteínas Recombinantes de Fusão/química , Etilmaleimida/química , Oxirredução , Processamento de Proteína Pós-Traducional , Proteínas/química , Proteínas SNARE/química , Estreptavidina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...