Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Electrophoresis ; 43(16-17): 1746-1754, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35656648

RESUMO

The laser print, cut, and laminate (PCL) method for microfluidic device fabrication can be leveraged for rapid and inexpensive prototyping of electrophoretic microchips useful for optimizing separation conditions. The rapid prototyping capability allows the evaluation of fluidic architecture, applied fields, reagent concentrations, and sieving matrix, all within the context of using fluorescence-compatible substrates. Cyclic olefin copolymer and toner-coated polyethylene terephthalate (tPeT) were utilized with the PCL technique and bonding methods optimized to improve device durability during electrophoresis. A series of separation channel designs and centrifugation conditions that provided successful loading of sieving polymer in less than 3 min was described. Separation of a 400-base DNA sizing ladder provided calculated base resolution between 3 and 4 bases, a greater than 18-fold improvement over separations on similar substrates. Finally, the accuracy and precision capabilities of these devices were demonstrated by separating and sizing DNA fragments of 147 and 167 bases as 148.62 ± 2 and 166.48 ± 3 bases, respectively.


Assuntos
DNA , Dispositivos Lab-On-A-Chip , Centrifugação , DNA/análise , Eletroforese , Polímeros
2.
Talanta ; 205: 120056, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31450388

RESUMO

Polymeric biguanides, as well as quaternary ammonium compounds, are ubiquitous antimicrobial agents in healthcare. Due to the highly cationic and polymeric nature of these compounds and the complex matrices in which they are found, the analytical characterization of products containing them remains challenging. In this work an efficient, sensitive, and high-resolution separation protocol was developed to perform quantitative measurements (sub-mg L-1) of alexidine dihydrochloride (ADH) and polyhexamethylene biguanide (PHMB) in commercial multipurpose contact lens solutions (MPS). Initially, contactless conductivity (C4D) detection was explored, but lacked adequate selectivity and sensitivity to quantify PHMB or ADH in commercial MPS. To overcome these limitations, an alternative approach using solid phase extraction (SPE) followed by separation with reversed phase ultra-performance liquid chromatography (RP-UPLC) was developed for both ADH and PHMB separation and detection. The most sensitive and reliable method investigated utilized standard additions to compensate for matrix effects. For ADH, concentration values measured with the presented method were consistent with data provided by the MPS manufacturer (1.6 mg L-1) within 0.10 mg L-1. PHMB quantification in MPS products was successful at concentrations <1 mg L-1 with quantitative reproducibility better than 2% RSD. Comparison of blind sample testing using the RP-UPLC method showed strong correlation (R2 = 0.939) of PHMB concentrations with results obtained by the United States Food and Drug Administration using a published HPLC-Evaporative light scattering detection (ELSD) assay. A significant advantage of this method is the ability to partially resolve PHMB polydispersity, which to date has been minimally studied and explained. By coupling with electrospray mass spectrometry (MS), a general trend was observed for increased retention as a function of PHMB chain length. The improved robustness and reproducibility of UV detection versus ELSD coupled with the superior resolving power of UPLC is an asset to the detection and characterization of PHMB and ADH. In addition to quality control of MPS, this method has potential application to the analyses skin wipes, wound dressings and other medical products where understanding how manufacturing processes lead to differences in polydispersity is important to maximize the antimicrobial properties while minimizing toxicologic effects.


Assuntos
Biguanidas/análise , Soluções para Lentes de Contato/análise , Eletroforese Capilar/métodos , Espectrometria de Massas/métodos , Cromatografia Líquida/métodos , Cromatografia de Fase Reversa , Desinfetantes/análise , Reprodutibilidade dos Testes , Extração em Fase Sólida
3.
Anal Chim Acta ; 980: 41-49, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28622802

RESUMO

Forensic DNA analysis requires several steps, including DNA extraction, PCR amplification, and separation of PCR fragments. Intuitively, there are numerous situations where it would be beneficial to speed up the overall DNA analysis process; in this work, we focus on the most time-consuming component in the analysis pipeline, namely the polymerase chain reaction (PCR). Primers were specially designed to target 10 human genomic loci, all yielding amplicons shorter than 350 bases, for ease of downstream integration with on-board microchip electrophoresis. Primer concentrations were adjusted specifically for microdevice amplification, resulting in well-balanced short tandem repeat (STR) profiles. Furthermore, studies were performed to push the limits of the DNA polymerase to achieve rapid, multiplexed PCR on various substrates, including transparent and black polyethylene terephthalate (Pe), and with two distinct adhesives, toner and heat sensitive adhesive (HSA). Rapid STR-based multiplexed PCR amplification is demonstrated in 15 min on a Pe microdevice using a custom-built system for fluid flow control and thermocycling for the full 10-plex, and in 10 min for a smaller multiplex consisting of six core CODIS loci plus Amelogenin with amplicons shorter than 200bp. Lastly, preliminary studies indicate the capability of this PCR microdevice platform to be integrated with both upstream DNA extraction, and downstream microchip electrophoresis. This, coupled to the use of reagents that are compatible with lyophilization (lyo-compatible) for PCR, represents the potential for a fully integrated rotationally-driven microdevice for complete forensic DNA analysis.


Assuntos
Eletroforese em Microchip , Genética Forense , Repetições de Microssatélites , Técnicas de Amplificação de Ácido Nucleico , DNA , Humanos , Reação em Cadeia da Polimerase
4.
Anal Chem ; 89(5): 3228-3234, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28192917

RESUMO

Total bilirubin (T-Bil) is an important clinical diagnostic marker that is measured frequently by physicians to assist in the diagnosis, treatment, and monitoring of multiple medical conditions. The work demonstrated here utilizes the 48-year-old mechanism of phototherapy that is commonly implemented in the treatment of infants with exaggerated physiologic and pathologic jaundice but adapts it to the microfluidic level for the ultimate purpose of total bilirubin quantitation. After acquisition of a small volume of blood (<10 µL) and through subsequent separation (plasma + red blood cells), a 3 µL plasma sample was imaged by a portable scanner and analyzed through a custom algorithm for color intensity. After blue light irradiation for 10 min at 470 nm, the sample was reimaged and analyzed. The resulting intensities obtained pre- and postimaging (clearly observed through a color change from yellow to clear) were then utilized to calculate the total bilirubin concentration. A total of 34 blood samples were analyzed with microfluidic photo treatment-image analysis (µPIA) and were found to have a Deming-regression slope of 0.97 (R2 = 0.960) when compared to the total bilirubin values determined in the clinical laboratory. We demonstrate the implementation of a centrifugal microdevice fabricated through the Print, Cut, and Laminate (PCL) method that accepts eight whole blood samples and provides the capabilities to not only quantitate total bilirubin (Deming-regression slope of 0.95, R2 = 0.990) but allow future integration with excess plasma sufficient for additional downstream clinical assays. This work will highlight the inexpensive nature of the analysis (absence of caustic, viscous, or additional reagents), the simplicity (does not require any chemical reactions), speed (sample-to-answer in <15 min), insusceptibility to biofouling (no protein matrix effects, hemoglobin interferences, and minimized turbidity), low volume plasma requirement (3 µL), and the ability for future downstream integration.


Assuntos
Bilirrubina/sangue , Microfluídica/métodos , Algoritmos , Bilirrubina/química , Humanos , Lasers Semicondutores , Luz , Microfluídica/instrumentação , Oxirredução
5.
Lab Chip ; 16(23): 4569-4580, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27766331

RESUMO

Current conventional methods utilized for forensic DNA analysis are time consuming and labor-intensive requiring large and expensive equipment and instrumentation. While more portable Rapid DNA systems have been developed, introducing them to a working laboratory still necessitates a high cost of initiation followed by the recurrent cost of the devices. This has highlighted the need for an inexpensive, rapid and portable DNA analysis tool for human identification in a forensic setting. In order for an integrated DNA analysis system such as this to be realized, device operations must always be concluded by a rapid separation of short-tandem repeat (STR) DNA fragments. Contributing to this, we report the development of a unique, multi-level, centrifugal microdevice that can perform both reagent loading and DNA separation. The fabrication protocol was inspired by the print, cut and laminate (PCL) technique described previously by our group, and in accordance, offers a rapid and inexpensive option compared with existing approaches. The device comprises multiple polyester-toner fluidic layers, a cyclic olefin copolymer separation domain and integrated gold leaf electrodes. All materials are commercially-available and complement the PCL process in a way that permits fabrication of increasingly sought after single-use devices. All reagents, including a viscous sieving matrix, are loaded centrifugally, eliminating external pneumatic pumping, and the sample is separated in <5 minutes using an effective separation length of only 4 cm (reagent loading to completed separation, is <37 minutes). The protocol for gold leaf electrode manufacture yielded up to 30 electrodes for less than $3 (cost of a 79 mm × 79 mm gold leaf sheet) and when using a device combining these electrodes and centrifugal reagent/polymer loading, the electrophoretic separation of STR fragments with two base resolution was demonstrated. This exemplary performance makes the device an ideal candidate for further integration and development of an inexpensive, portable and rapid forensic human identification system.


Assuntos
Centrifugação/instrumentação , DNA/isolamento & purificação , Eletroforese/instrumentação , Ouro , Dispositivos Lab-On-A-Chip , Eletrodos , Desenho de Equipamento , Fatores de Tempo
6.
Analyst ; 141(15): 4667-75, 2016 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-27250903

RESUMO

To date, the forensic community regards solid phase extraction (SPE) as the most effective methodology for the purification of DNA for use in short tandem repeat (STR) polymerase chain reaction (PCR) amplification. While a dominant methodology, SPE protocols generally necessitate the use of PCR inhibitors (guanidine, IPA) and, in addition, can demand timescales of up to 30 min due to the necessary load, wash and elution steps. The recent discovery and characterization of the EA1 protease has allowed the user to enzymatically extract (not purify) DNA, dramatically simplifying the task of producing a PCR-ready template. Despite this, this procedure has yet to make a significant impact on microfluidic technologies. Here, we describe a microfluidic device that implements the EA1 enzyme for DNA extraction by incorporating it into a hybrid microdevice comprising laminated polyester (Pe) and PMMA layers. The PMMA layer provides a macro-to-micro interface for introducing the biological sample into the microfluidic architecture, whilst also possessing the necessary dimensions to function as the swab acceptor. Pre-loaded reagents are then introduced to the swab chamber centrifugally, initiating DNA extraction at 75 °C. The extraction of DNA occurs in timescales of less than 3 min and any external hardware associated with the transportation of reagents by pneumatic pumping is eliminated. Finally, multiplexing is demonstrated with a circular device containing eight separate chambers for the simultaneous processing of eight buccal swab samples. The studies here provide DNA concentrations up to 10 ng µL(-1) with a 100% success rate in less than 3 minutes. The STR profiles generated using these extracted samples demonstrate that the DNA is of PCR forensic-quality and adequate for human identification.


Assuntos
DNA/isolamento & purificação , Enzimas , Técnicas Analíticas Microfluídicas , Polimetil Metacrilato , Humanos , Poliésteres , Reação em Cadeia da Polimerase
7.
Anal Chim Acta ; 924: 1-8, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27181638

RESUMO

Hematocrit (HCT) measurements are important clinical diagnostic variables that help physicians diagnose and treat various medical conditions, ailments, and diseases. In this work, we present the HCT Disc, a centrifugal microdevice fabricated by a Print, Cut and Laminate (PCL) method to generate a 12-sample HCT device from materials costing <0.5 USD (polyester and toner or PeT). Following introduction from a drop of blood (finger stick), whole blood metering and cell sedimentation are controlled by centrifugal force, only requiring a CD player motor as external hardware and, ultimately, a cell phone for detection. The sedimented volume from patient blood in the HCT Disc was analyzed using a conventional scanner/custom algorithm for analysis of the image to determine a hematocrit value, and these were compared to values generated in a clinical laboratory, which correlated well. To enhance portability and assure simplicity of the HCT measurement, values from image analysis by a cell phone using a custom application was compared to the scanner. Fifteen samples were analyzed with cell phone image analysis system and were found to be within 4% of the HCT values determined in the clinical lab. We demonstrate the feasibility of the PeT device for HCT measurement, and highlight its uniquely low cost (<0.5 USD), speed (sample-to-answer <8 min), multiplexability (12 samples), low volume whole blood requirement (<3 µL), rotation speeds (<4000 rpm) needed for effective measurement as well as the direct finger-to-chip sample loading capability.


Assuntos
Hematócrito/instrumentação , Poliésteres/química , Telefone Celular , Centrifugação/instrumentação , Desenho de Equipamento , Hematócrito/economia , Humanos , Processamento de Imagem Assistida por Computador , Fatores de Tempo
8.
Nat Protoc ; 10(6): 875-86, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25974096

RESUMO

We describe a technique for fabricating microfluidic devices with complex multilayer architectures using a laser printer, a CO2 laser cutter, an office laminator and common overhead transparencies as a printable substrate via a laser print, cut and laminate (PCL) methodology. The printer toner serves three functions: (i) it defines the microfluidic architecture, which is printed on the overhead transparencies; (ii) it acts as the adhesive agent for the bonding of multiple transparency layers; and (iii) it provides, in its unmodified state, printable, hydrophobic 'valves' for fluidic flow control. By using common graphics software, e.g., CorelDRAW or AutoCAD, the protocol produces microfluidic devices with a design-to-device time of ∼40 min. Devices of any shape can be generated for an array of multistep assays, with colorimetric detection of molecular species ranging from small molecules to proteins. Channels with varying depths can be formed using multiple transparency layers in which a CO2 laser is used to remove the polyester from the channel sections of the internal layers. The simplicity of the protocol, availability of the equipment and substrate and cost-effective nature of the process make microfluidic devices available to those who might benefit most from expedited, microscale chemistry.


Assuntos
Dispositivos Lab-On-A-Chip , Impressão , Lasers de Gás
9.
J Arthroplasty ; 26(5): 771-6, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20851565

RESUMO

This study evaluated the use of a system that delivers a small field of local, directed air from a high-efficiency particulate air (HEPA) filter to reduce airborne particulate and airborne bacteria in the surgical field during total hip arthroplasty. Thirty-six patients were randomized into 3 groups: with directed air flow, with the directed air flow system present but turned off, and control. Airborne particulate and bacteria were collected from within 5 cm of the surgical wound. All particulate and bacterial counts at the surgical site were significantly lower in the directed air flow group (P < .001). The directed air flow system was effective in reducing airborne particulate and colony-forming units in the surgical field during total hip arthroplasty.


Assuntos
Poluição do Ar em Ambientes Fechados , Artroplastia de Quadril , Infecções Bacterianas/epidemiologia , Salas Cirúrgicas , Material Particulado , Infecção da Ferida Cirúrgica/epidemiologia , Ventilação/métodos , Poluição do Ar em Ambientes Fechados/prevenção & controle , Bactérias/isolamento & purificação , Infecções Bacterianas/etiologia , Filtração/instrumentação , Filtração/métodos , Articulação do Quadril/microbiologia , Articulação do Quadril/cirurgia , Humanos , Incidência , Controle de Infecções/instrumentação , Controle de Infecções/métodos , Material Particulado/efeitos adversos , Infecção da Ferida Cirúrgica/etiologia , Ventilação/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...