Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Med Phys ; 46(11): 5216-5226, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31442300

RESUMO

PURPOSE: Accurate, patient-specific radiation dosimetry for CT scanning is critical to optimize radiation doses and balance dose against image quality. While Monte Carlo (MC) simulation is often used to estimate doses from CT, comparison of estimates to experimentally measured values is lacking for advanced CT scanners incorporating novel design features. We aimed to compare radiation dose estimates from MC simulation to doses measured in physical anthropomorphic phantoms using metal-oxide semiconductor field-effect transistors (MOSFETs) in a 256-slice CT scanner. METHODS: Fifty MOSFETs were placed in organs within tissue-equivalent anthropomorphic adult and pediatric radiographic phantoms, which were scanned using a variety of chest, cardiac, abdomen, brain, and whole-body protocols on a 256-slice system. MC computations were performed on voxelized CT reconstructions of the phantoms using a highly parallel MC tool developed specifically for diagnostic X-ray energies and rapid computation. Doses were compared between MC estimates and physical measurements. RESULTS: The average ratio of MOSFET to MC dose in the in-field region was close to 1 (range, 0.96-1.12; mean ± SD, 1.01 ± 0.04), indicating outstanding agreement between measured and simulated doses. The difference between measured and simulated doses tended to increase with distance from the in-field region. The error in the MC simulations due to the limited number of simulated photons was less than 1%. The errors in the MOSFET dose determinations in the in-field region for a single scan were mainly due to the calibration method and were typically about 6% (8% if the error in the reading of the ionization chamber that was used for the MOSFET calibration was included). CONCLUSIONS: Radiation dose estimation using a highly parallelized MC method is strongly correlated with experimental measurements in physical adult and infant anthropomorphic phantoms for a wide range of scans performed on a 256-slice CT scanner. Incorporation into CT scanners of radiation-dose distribution estimation, employing the scanner's reconstructed images of the patient, may offer the potential for accurate patient-specific CT dosimetry.


Assuntos
Metais/química , Método de Monte Carlo , Óxidos , Imagens de Fantasmas , Doses de Radiação , Tomografia Computadorizada por Raios X/instrumentação , Transistores Eletrônicos , Adulto , Calibragem , Humanos , Radiometria , Imagem Corporal Total
2.
JACC Cardiovasc Imaging ; 11(1): 64-74, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28823748

RESUMO

OBJECTIVES: This study sought to determine updated conversion factors (k-factors) that would enable accurate estimation of radiation effective dose (ED) for coronary computed tomography angiography (CTA) and calcium scoring performed on 12 contemporary scanner models and current clinical cardiac protocols and to compare these methods to the standard chest k-factor of 0.014 mSv·mGy-1cm-1. BACKGROUND: Accurate estimation of ED from cardiac CT scans is essential to meaningfully compare the benefits and risks of different cardiac imaging strategies and optimize test and protocol selection. Presently, ED from cardiac CT is generally estimated by multiplying a scanner-reported parameter, the dose-length product, by a k-factor which was determined for noncardiac chest CT, using single-slice scanners and a superseded definition of ED. METHODS: Metal-oxide-semiconductor field-effect transistor radiation detectors were positioned in organs of anthropomorphic phantoms, which were scanned using all cardiac protocols, 120 clinical protocols in total, on 12 CT scanners representing the spectrum of scanners from 5 manufacturers (GE, Hitachi, Philips, Siemens, Toshiba). Organ doses were determined for each protocol, and ED was calculated as defined in International Commission on Radiological Protection Publication 103. Effective doses and scanner-reported dose-length products were used to determine k-factors for each scanner model and protocol. RESULTS: k-Factors averaged 0.026 mSv·mGy-1cm-1 (95% confidence interval: 0.0258 to 0.0266) and ranged between 0.020 and 0.035 mSv·mGy-1cm-1. The standard chest k-factor underestimates ED by an average of 46%, ranging from 30% to 60%, depending on scanner, mode, and tube potential. Factors were higher for prospective axial versus retrospective helical scan modes, calcium scoring versus coronary CTA, and higher (100 to 120 kV) versus lower (80 kV) tube potential and varied among scanner models (range of average k-factors: 0.0229 to 0.0277 mSv·mGy-1cm-1). CONCLUSIONS: Cardiac k-factors for all scanners and protocols are considerably higher than the k-factor currently used to estimate ED of cardiac CT studies, suggesting that radiation doses from cardiac CT have been significantly and systematically underestimated. Using cardiac-specific factors can more accurately inform the benefit-risk calculus of cardiac-imaging strategies.


Assuntos
Angiografia por Tomografia Computadorizada/instrumentação , Angiografia Coronária/instrumentação , Doença da Artéria Coronariana/diagnóstico por imagem , Vasos Coronários/diagnóstico por imagem , Doses de Radiação , Tomógrafos Computadorizados , Calcificação Vascular/diagnóstico por imagem , Simulação por Computador , Desenho de Equipamento , Humanos , Imagens de Fantasmas , Valor Preditivo dos Testes
3.
Med Phys ; 44(12): 6589-6602, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28940306

RESUMO

PURPOSE: Metal-oxide-semiconductor field-effect transistors (MOSFETs) serve as a helpful tool for organ radiation dosimetry and their use has grown in computed tomography (CT). While different approaches have been used for MOSFET calibration, those using the commonly available 100 mm pencil ionization chamber have not incorporated measurements performed throughout its length, and moreover, no previous work has rigorously evaluated the multiple sources of error involved in MOSFET calibration. In this paper, we propose a new MOSFET calibration approach to translate MOSFET voltage measurements into absorbed dose from CT, based on serial measurements performed throughout the length of a 100-mm ionization chamber, and perform an analysis of the errors of MOSFET voltage measurements and four sources of error in calibration. METHODS: MOSFET calibration was performed at two sites, to determine single calibration factors for tube potentials of 80, 100, and 120 kVp, using a 100-mm-long pencil ion chamber and a cylindrical computed tomography dose index (CTDI) phantom of 32 cm diameter. The dose profile along the 100-mm ion chamber axis was sampled in 5 mm intervals by nine MOSFETs in the nine holes of the CTDI phantom. Variance of the absorbed dose was modeled as a sum of the MOSFET voltage measurement variance and the calibration factor variance, the latter being comprised of three main subcomponents: ionization chamber reading variance, MOSFET-to-MOSFET variation and a contribution related to the fact that the average calibration factor of a few MOSFETs was used as an estimate for the average value of all MOSFETs. MOSFET voltage measurement error was estimated based on sets of repeated measurements. The calibration factor overall voltage measurement error was calculated from the above analysis. RESULTS: Calibration factors determined were close to those reported in the literature and by the manufacturer (~3 mV/mGy), ranging from 2.87 to 3.13 mV/mGy. The error σV of a MOSFET voltage measurement was shown to be proportional to the square root of the voltage V: σV=cV where c = 0.11 mV. A main contributor to the error in the calibration factor was the ionization chamber reading error with 5% error. The usage of a single calibration factor for all MOSFETs introduced an additional error of about 5-7%, depending on the number of MOSFETs that were used to determine the single calibration factor. The expected overall error in a high-dose region (~30 mGy) was estimated to be about 8%, compared to 6% when an individual MOSFET calibration was performed. For a low-dose region (~3 mGy), these values were 13% and 12%. CONCLUSIONS: A MOSFET calibration method was developed using a 100-mm pencil ion chamber and a CTDI phantom, accompanied by an absorbed dose error analysis reflecting multiple sources of measurement error. When using a single calibration factor, per tube potential, for different MOSFETs, only a small error was introduced into absorbed dose determinations, thus supporting the use of a single calibration factor for experiments involving many MOSFETs, such as those required to accurately estimate radiation effective dose.


Assuntos
Metais/química , Óxidos/química , Radiometria/instrumentação , Tomografia Computadorizada por Raios X/instrumentação , Transistores Eletrônicos , Calibragem , Projetos de Pesquisa
4.
J Cardiovasc Comput Tomogr ; 10(3): 265-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26853972

RESUMO

BACKGROUND: Estimates of effective dose (E) for cardiovascular CT are obtained from a scanner-provided dose metric, the dose-length product (DLP), and a conversion factor. These estimates may not adequately represent the risk of a specific scan to obese adults. OBJECTIVE: Our objective was to create dose maps sensitive to patient size and anatomy in the irradiated region from a patient's own CT images and compare measured E (EDoseMap) to doses determined from standard DLP conversion (EDLP) in obese adults. METHODS: 21 obese patients (mean body mass index, 39 kg/m(2)) underwent CT of the pulmonary veins, thoracic aorta, or coronary arteries. DLP values were converted to E. A Monte Carlo tool was used to simulate X-ray photon interaction with virtual phantoms created from each patient's image set. Organ doses were determined from dose maps. EDoseMap was computed as a weighted sum of organ doses multiplied by tissue-weighting factors. RESULTS: EDLP (mean ± SD, 5.7 ± 3.3 mSv) was larger than EDoseMap (3.4 ± 2.4 mSv) (difference = 2.3; P < .001). CONCLUSION: Dose maps derived from patient CT images yielded lower effective doses than DLP conversion methods. Considering over all patient size, organ size, and tissue composition could lead to better dose metrics for obese patients.


Assuntos
Aortografia/métodos , Doenças Cardiovasculares/diagnóstico por imagem , Angiografia por Tomografia Computadorizada , Angiografia Coronária/métodos , Tomografia Computadorizada Multidetectores , Obesidade/complicações , Modelagem Computacional Específica para o Paciente , Flebografia/métodos , Doses de Radiação , Aorta Torácica/diagnóstico por imagem , Índice de Massa Corporal , Doenças Cardiovasculares/complicações , Angiografia por Tomografia Computadorizada/instrumentação , Angiografia Coronária/instrumentação , Vasos Coronários/diagnóstico por imagem , Humanos , Método de Monte Carlo , Tomografia Computadorizada Multidetectores/instrumentação , Obesidade/diagnóstico , Imagens de Fantasmas , Flebografia/instrumentação , Projetos Piloto , Valor Preditivo dos Testes , Veias Pulmonares/diagnóstico por imagem , Estudos Retrospectivos
5.
Curr Cardiol Rep ; 14(1): 17-23, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22057687

RESUMO

Since its introduction in the 1970s, diagnostic computed tomography (CT) imaging has grown rapidly and developed into a standard diagnostic test for a wide variety of cardiovascular conditions. Although this has undoubtedly led to improved medical care, it has also been associated with a significant increase in population-based radiation exposure and the potential downstream increase in cancer is a justified concern. For cardiovascular CT, new CT scanner technologies were initially directed toward maximizing image quality rather than minimizing radiation exposure. Only more recently have technologic advances yielded dose-saving protocols for cardiovascular applications, with impressive reduction of radiation exposure. The achievable limits of population-based exposure are dependent on responsible, evidence-based use of CT for cardiovascular imaging as well as exploitation of available and emerging dose-saving strategies.


Assuntos
Angiografia Coronária/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Neoplasias Induzidas por Radiação/prevenção & controle , Tomografia Computadorizada por Raios X/métodos , Fatores Etários , Índice de Massa Corporal , Angiografia Coronária/efeitos adversos , Relação Dose-Resposta à Radiação , Feminino , Humanos , Masculino , Doses de Radiação , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...