Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 40(10): e262-e272, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32814440

RESUMO

OBJECTIVE: The risk of thrombosis in myeloproliferative neoplasms, such as primary myelofibrosis varies depending on the type of key driving mutation (JAK2 [janus kinase 2], CALR [calreticulin], and MPL [myeloproliferative leukemia protein or thrombopoietin receptor]) and the accompanying mutations in other genes. In the current study, we sought to examine the propensity for thrombosis, as well as platelet activation properties in a mouse model of primary myelofibrosis induced by JAK2V617F (janus kinase 2 with valine to phenylalanine substitution on codon 617) mutation. Approach and Results: Vav1-hJAK2V617F transgenic mice show hallmarks of primary myelofibrosis, including significant megakaryocytosis and bone marrow fibrosis, with a moderate increase in red blood cells and platelet number. This mouse model was used to study responses to 2 models of vascular injury and to investigate platelet properties. Platelets derived from the mutated mice have reduced aggregation in response to collagen, reduced thrombus formation and thrombus size, as demonstrated using laser-induced or FeCl3-induced vascular injury models, and increased bleeding time. Strikingly, the mutated platelets had a significantly reduced number of dense granules, which could explain impaired ADP secretion upon platelet activation, and a diminished second wave of activation. CONCLUSIONS: Together, our study highlights for the first time the influence of a hyperactive JAK2 on platelet activation-induced ADP secretion and dense granule homeostasis, with consequent effects on platelet activation properties.


Assuntos
Coagulação Sanguínea , Plaquetas/enzimologia , Lesões das Artérias Carótidas/enzimologia , Janus Quinase 2/sangue , Megacariócitos/enzimologia , Ativação Plaquetária , Mielofibrose Primária/enzimologia , Trombose/enzimologia , Animais , Lesões das Artérias Carótidas/sangue , Lesões das Artérias Carótidas/genética , Modelos Animais de Doenças , Janus Quinase 2/genética , Camundongos Transgênicos , Mutação , Agregação Plaquetária , Mielofibrose Primária/sangue , Mielofibrose Primária/genética , Trombopoese , Trombose/sangue , Trombose/genética
2.
Proc Natl Acad Sci U S A ; 114(50): E10772-E10781, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29180415

RESUMO

ESX (ESAT-6 system) export systems play diverse roles across mycobacterial species. Interestingly, genetic disruption of ESX systems in different species does not result in an accumulation of protein substrates in the mycobacterial cell. However, the mechanisms underlying this observation are elusive. We hypothesized that the levels of ESX substrates were regulated by a feedback-control mechanism, linking the levels of substrates to the secretory status of ESX systems. To test this hypothesis, we used a combination of genetic, transcriptomic, and proteomic approaches to define export-dependent mechanisms regulating the levels of ESX-1 substrates in Mycobacterium marinum WhiB6 is a transcription factor that regulates expression of genes encoding ESX-1 substrates. We found that, in the absence of the genes encoding conserved membrane components of the ESX-1 system, the expression of the whiB6 gene and genes encoding ESX-1 substrates were reduced. Accordingly, the levels of ESX-1 substrates were decreased, and WhiB6 was not detected in M. marinum strains lacking genes encoding ESX-1 components. We demonstrated that, in the absence of EccCb1, a conserved ESX-1 component, substrate gene expression was restored by constitutive, but not native, expression of the whiB6 gene. Finally, we found that the loss of WhiB6 resulted in a virulent M. marinum strain with reduced ESX-1 secretion. Together, our findings demonstrate that the levels of ESX-1 substrates in M. marinum are fine-tuned by negative feedback control, linking the expression of the whiB6 gene to the presence, not the functionality, of the ESX-1 membrane complex.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Mycobacterium marinum/genética , Fatores de Transcrição/metabolismo , Sistemas de Secreção Tipo VII/genética , Retroalimentação Fisiológica , Mycobacterium marinum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...