Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Ecol Evol ; 8(4): 663-675, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38366132

RESUMO

Climate change is altering the functioning of foundational ecosystems. While the direct effects of warming are expected to influence individual species, the indirect effects of warming on species interactions remain poorly understood. In marine systems, as tropical herbivores undergo poleward range expansion, they may change food web structure and alter the functioning of key habitats. While this process ('tropicalization') has been documented within declining kelp forests, we have a limited understanding of how this process might unfold across other systems. Here we use a network of sites spanning 23° of latitude to explore the effects of increased herbivory (simulated via leaf clipping) on the structure of a foundational marine plant (turtlegrass). By working across its geographic range, we also show how gradients in light, temperature and nutrients modified plant responses. We found that turtlegrass near its northern boundary was increasingly affected (reduced productivity) by herbivory and that this response was driven by latitudinal gradients in light (low insolation at high latitudes). By contrast, low-latitude meadows tolerated herbivory due to high insolation which enhanced plant carbohydrates. We show that as herbivores undergo range expansion, turtlegrass meadows at their northern limit display reduced resilience and may be under threat of ecological collapse.


Assuntos
Ecossistema , Herbivoria , Cadeia Alimentar , Florestas , Mudança Climática , Plantas
2.
Am Nat ; 198(6): E215-E231, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34762571

RESUMO

AbstractWe studied the shapes of eggs from 955 extant bird species across the avian phylogeny, including 39 of 40 orders and 78% of 249 families. We show that the elongation component of egg shape (length relative to width) is largely the result of constraints imposed by the female's anatomy during egg formation, whereas asymmetry (pointedness) is mainly an adaptation to conditions during the incubation period. Thus, egg elongation is associated with the size of the egg in relation to both the size of the female's oviduct and her general body conformation and mode of locomotion correlated with pelvis shape. Egg asymmetry is related mainly to clutch size and the structure of the incubation site, factors that influence thermal efficiency during incubation and the risk of breakage. Importantly, general patterns across the avian phylogeny do not always reflect the trends within lower taxonomic levels. We argue that the analysis of avian egg shape is most profitably conducted within taxa where all species share similar life histories and ecologies, as there is no single factor that influences egg shape in the same way in all bird species.


Assuntos
Evolução Biológica , Aves , Adaptação Fisiológica , Animais , Tamanho da Ninhada , Feminino , Humanos , Filogenia
3.
Ecol Evol ; 8(19): 9728-9738, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30386570

RESUMO

Describing the range of avian egg shapes quantitatively has long been recognized as difficult. A variety of approaches has been adopted, some of which aim to capture the shape accurately and some to provide intelligible indices of shape. The objectives here are to show that a (four-parameter) method proposed by Preston (1953, The Auk, 70, 160) is the best option for quantifying egg shape, to provide and document an R program for applying this method to suitable photographs of eggs, to illustrate that intelligible shape indices can be derived from the summary this method provides, to review shape indices that have been proposed, and to report on the errors introduced using photographs of eggs at rest rather than horizontal.

4.
J Exp Biol ; 221(Pt 23)2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30322981

RESUMO

Birds are arguably the most evolutionarily successful extant vertebrate taxon, in part because of their ability to reproduce in virtually all terrestrial habitats. Common guillemots, Uria aalge, incubate their single egg in an unusual and harsh environment; on exposed cliff ledges, without a nest, and in close proximity to conspecifics. As a consequence, the surface of guillemot eggshells is frequently contaminated with faeces, dirt, water and other detritus, which may impede gas exchange or facilitate microbial infection of the developing embryo. Despite this, guillemot chicks survive incubation and hatch from eggs heavily covered with debris. To establish how guillemot eggs cope with external debris, we tested three hypotheses: (1) contamination by debris does not reduce gas exchange efficacy of the eggshell to a degree that may impede normal embryo development; (2) the guillemot eggshell surface is self-cleaning; (3) shell accessory material (SAM) prevents debris from blocking pores, allowing relatively unrestricted gas diffusion across the eggshell. We showed that natural debris reduces the conductance of gases across the guillemot eggshell by blocking gas exchange pores. Despite this problem, we found no evidence that guillemot eggshells are self-cleaning, but instead showed that the presence of SAM on the eggshell surface largely prevents pore blockages from occurring. Our results demonstrate that SAM is a crucial feature of the eggshell surface in a species with eggs that are frequently in contact with debris, acting to minimise pore blockages and thus ensure a sufficient rate of gas diffusion for embryo development.


Assuntos
Charadriiformes/embriologia , Casca de Ovo/fisiologia , Gases/metabolismo , Animais , Dióxido de Carbono/metabolismo , Casca de Ovo/anatomia & histologia , Comportamento de Nidação , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...