Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Res ; 120(3): 286-300, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38271281

RESUMO

AIMS: Doxorubicin (DXR) is a chemotherapeutic agent that causes dose-dependent cardiotoxicity. Recently, it has been proposed that the NADase CD38 may play a role in doxorubicin-induced cardiotoxicity (DIC). CD38 is the main NAD+-catabolizing enzyme in mammalian tissues. Interestingly, in the heart, CD38 is mostly expressed as an ecto-enzyme that can be targeted by specific inhibitory antibodies. The goal of the present study is to characterize the role of CD38 ecto-enzymatic activity in cardiac metabolism and the development of DIC. METHODS AND RESULTS: Using both a transgenic animal model and a non-cytotoxic enzymatic anti-CD38 antibody, we investigated the role of CD38 and its ecto-NADase activity in DIC in pre-clinical models. First, we observed that DIC was prevented in the CD38 catalytically inactive (CD38-CI) transgenic mice. Both left ventricular systolic function and exercise capacity were decreased in wild-type but not in CD38-CI mice treated with DXR. Second, blocking CD38-NADase activity with the specific antibody 68 (Ab68) likewise protected mice against DIC and decreased DXR-related mortality by 50%. A reduction of DXR-induced mitochondrial dysfunction, energy deficiency, and inflammation gene expression were identified as the main mechanisms mediating the protective effects. CONCLUSION: NAD+-preserving strategies by inactivation of CD38 via a genetic or a pharmacological-based approach improve cardiac energetics and reduce cardiac inflammation and dysfunction otherwise seen in an acute DXR cardiotoxicity model.


Assuntos
NAD+ Nucleosidase , NAD , Camundongos , Animais , NAD+ Nucleosidase/metabolismo , ADP-Ribosil Ciclase 1/genética , ADP-Ribosil Ciclase 1/metabolismo , NAD/metabolismo , Cardiotoxicidade , Camundongos Transgênicos , Doxorrubicina/toxicidade , Inflamação , Mamíferos/metabolismo
2.
Res Sq ; 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37502859

RESUMO

Obesity-related type II diabetes (diabesity) has increased global morbidity and mortality dramatically. Previously, the ancient drug salicylate demonstrated promise for the treatment of type II diabetes, but its clinical use was precluded due to high dose requirements. In this study, we present a nitroalkene derivative of salicylate, 5-(2-nitroethenyl)salicylic acid (SANA), a molecule with unprecedented beneficial effects in diet-induced obesity (DIO). SANA reduces DIO, liver steatosis and insulin resistance at doses up to 40 times lower than salicylate. Mechanistically, SANA stimulated mitochondrial respiration and increased creatine-dependent energy expenditure in adipose tissue. Indeed, depletion of creatine resulted in the loss of SANA action. Moreover, we found that SANA binds to creatine kinases CKMT1/2, and downregulation CKMT1 interferes with the effect of SANA in vivo. Together, these data demonstrate that SANA is a first-in-class activator of creatine-dependent energy expenditure and thermogenesis in adipose tissue and emerges as a candidate for the treatment of diabesity.

3.
Front Endocrinol (Lausanne) ; 13: 896356, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600581

RESUMO

Advanced paternal age has increasingly been recognized as a risk factor for male fertility and progeny health. While underlying causes are not well understood, aging is associated with a continuous decline of blood and tissue NAD+ levels, as well as a decline of testicular functions. The important basic question to what extent ageing-related NAD+ decline is functionally linked to decreased male fertility has been difficult to address due to the pleiotropic effects of aging, and the lack of a suitable animal model in which NAD+ levels can be lowered experimentally in chronologically young adult males. We therefore developed a transgenic mouse model of acquired niacin dependency (ANDY), in which NAD+ levels can be experimentally lowered using a niacin-deficient, chemically defined diet. Using ANDY mice, this report demonstrates for the first time that decreasing body-wide NAD+ levels in young adult mice, including in the testes, to levels that match or exceed the natural NAD+ decline observed in old mice, results in the disruption of spermatogenesis with small testis sizes and reduced sperm counts. ANDY mice are dependent on dietary vitamin B3 (niacin) for NAD+ synthesis, similar to humans. NAD+-deficiency the animals develop on a niacin-free diet is reversed by niacin supplementation. Providing niacin to NAD+-depleted ANDY mice fully rescued spermatogenesis and restored normal testis weight in the animals. The results suggest that NAD+ is important for proper spermatogenesis and that its declining levels during aging are functionally linked to declining spermatogenesis and male fertility. Functions of NAD+ in retinoic acid synthesis, which is an essential testicular signaling pathway regulating spermatogonial proliferation and differentiation, may offer a plausible mechanism for the hypospermatogenesis observed in NAD+-deficient mice.


Assuntos
Niacina , Envelhecimento , Animais , Masculino , Camundongos , Camundongos Transgênicos , NAD/metabolismo , NAD/farmacologia , Niacina/metabolismo , Niacina/farmacologia , Espermatogênese
4.
Aging Cell ; 21(4): e13589, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35263032

RESUMO

Nicotinamide adenine dinucleotide (NAD) levels decline during aging, contributing to physical and metabolic dysfunction. The NADase CD38 plays a key role in age-related NAD decline. Whether the inhibition of CD38 increases lifespan is not known. Here, we show that the CD38 inhibitor 78c increases lifespan and healthspan of naturally aged mice. In addition to a 10% increase in median survival, 78c improved exercise performance, endurance, and metabolic function in mice. The effects of 78c were different between sexes. Our study is the first to investigate the effect of CD38 inhibition in naturally aged animals.


Assuntos
Longevidade , NAD , ADP-Ribosil Ciclase 1/metabolismo , Envelhecimento/metabolismo , Animais , Camundongos , NAD/metabolismo , NAD+ Nucleosidase/metabolismo
5.
Am J Physiol Cell Physiol ; 322(3): C521-C545, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35138178

RESUMO

Nicotinamide adenine dinucleotide (NAD) acts as a cofactor in several oxidation-reduction (redox) reactions and is a substrate for a number of nonredox enzymes. NAD is fundamental to a variety of cellular processes including energy metabolism, cell signaling, and epigenetics. NAD homeostasis appears to be of paramount importance to health span and longevity, and its dysregulation is associated with multiple diseases. NAD metabolism is dynamic and maintained by synthesis and degradation. The enzyme CD38, one of the main NAD-consuming enzymes, is a key component of NAD homeostasis. The majority of CD38 is localized in the plasma membrane with its catalytic domain facing the extracellular environment, likely for the purpose of controlling systemic levels of NAD. Several cell types express CD38, but its expression predominates on endothelial cells and immune cells capable of infiltrating organs and tissues. Here we review potential roles of CD38 in health and disease and postulate ways in which CD38 dysregulation causes changes in NAD homeostasis and contributes to the pathophysiology of multiple conditions. Indeed, in animal models the development of infectious diseases, autoimmune disorders, fibrosis, metabolic diseases, and age-associated diseases including cancer, heart disease, and neurodegeneration are associated with altered CD38 enzymatic activity. Many of these conditions are modified in CD38-deficient mice or by blocking CD38 NADase activity. In diseases in which CD38 appears to play a role, CD38-dependent NAD decline is often a common denominator of pathophysiology. Thus, understanding dysregulation of NAD homeostasis by CD38 may open new avenues for the treatment of human diseases.


Assuntos
Glicosídeo Hidrolases , NAD , ADP-Ribosil Ciclase 1/genética , ADP-Ribosil Ciclase 1/metabolismo , Animais , Células Endoteliais/metabolismo , Camundongos , NAD/metabolismo , NAD+ Nucleosidase/metabolismo
6.
Nat Metab ; 2(11): 1284-1304, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33199925

RESUMO

Decreased NAD+ levels have been shown to contribute to metabolic dysfunction during aging. NAD+ decline can be partially prevented by knockout of the enzyme CD38. However, it is not known how CD38 is regulated during aging, and how its ecto-enzymatic activity impacts NAD+ homeostasis. Here we show that an increase in CD38 in white adipose tissue (WAT) and the liver during aging is mediated by accumulation of CD38+ immune cells. Inflammation increases CD38 and decreases NAD+. In addition, senescent cells and their secreted signals promote accumulation of CD38+ cells in WAT, and ablation of senescent cells or their secretory phenotype decreases CD38, partially reversing NAD+ decline. Finally, blocking the ecto-enzymatic activity of CD38 can increase NAD+ through a nicotinamide mononucleotide (NMN)-dependent process. Our findings demonstrate that senescence-induced inflammation promotes accumulation of CD38 in immune cells that, through its ecto-enzymatic activity, decreases levels of NMN and NAD+.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Envelhecimento/metabolismo , Glicoproteínas de Membrana/metabolismo , NAD/biossíntese , ADP-Ribosil Ciclase 1/genética , ADP-Ribosil Ciclase 1/imunologia , Adipócitos Brancos/metabolismo , Tecido Adiposo Branco/metabolismo , Envelhecimento/imunologia , Animais , Transplante de Medula Óssea , Senescência Celular , Células HEK293 , Humanos , Inflamação/imunologia , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mononucleotídeo de Nicotinamida/metabolismo , Fenótipo
7.
J Gen Virol ; 90(Pt 9): 2251-9, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19439552

RESUMO

Epstein-Barr virus (EBV) is the causative agent of infectious mononucleosis and a risk factor for developing a variety of lymphomas and carcinomas. EBV nuclear antigen 1 (EBNA1) is the only viral protein found in all EBV-related malignancies. It plays a key role in establishing and maintaining the altered state of cells transformed with EBV. EBNA1 is required for a variety of functions, including gene regulation, replication and maintenance of the viral genome, but the regulation of EBNA1's functions is poorly understood. We demonstrate that phosphorylation affects the functions of EBNA1. By using electron-transfer dissociation tandem mass spectrometry, ten specific phosphorylated EBNA1 residues were identified. A mutant derivative preventing the phosphorylation of all ten phosphosites retained the unusually long half-life and the ability to translocate into the nucleus of wild-type EBNA1. This phosphorylation-deficient mutant, however, had a significantly reduced ability to activate transcription and to maintain EBV's plasmids in cells.


Assuntos
Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Infecções por Vírus Epstein-Barr/virologia , Antígenos Nucleares do Vírus Epstein-Barr/química , Antígenos Nucleares do Vírus Epstein-Barr/genética , Herpesvirus Humano 4/química , Herpesvirus Humano 4/genética , Humanos , Dados de Sequência Molecular , Mutação , Fosforilação , Ativação Transcricional
8.
J Biol Chem ; 282(49): 35471-81, 2007 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-17932035

RESUMO

In recent years there has been growing interest in the post-translational regulation of P-type ATPases by protein kinase-mediated phosphorylation. Pma1 H(+)-ATPase, which is responsible for H(+)-dependent nutrient uptake in yeast (Saccharomyces cerevisiae), is one such example, displaying a rapid 5-10-fold increase in activity when carbon-starved cells are exposed to glucose. Activation has been linked to Ser/Thr phosphorylation in the C-terminal tail of the ATPase, but the specific phosphorylation sites have not previously been mapped. The present study has used nanoflow high pressure liquid chromatography coupled with electrospray electron transfer dissociation tandem mass spectrometry to identify Ser-911 and Thr-912 as two major phosphorylation sites that are clearly related to glucose activation. In carbon-starved cells with low Pma1 activity, peptide 896-918, which was derived from the C terminus upon Lys-C proteolysis, was found to be singly phosphorylated at Thr-912, whereas in glucose-metabolizing cells with high ATPase activity, the same peptide was doubly phosphorylated at Ser-911 and Thr-912. Reciprocal (14)N/(15)N metabolic labeling of cells was used to measure the relative phosphorylation levels at the two sites. The addition of glucose to carbon-starved cells led to a 3-fold reduction in the singly phosphorylated form and an 11-fold increase in the doubly phosphorylated form. These results point to a mechanism in which the stepwise phosphorylation of two tandemly positioned residues near the C terminus mediates glucose-dependent activation of the H(+)-ATPase.


Assuntos
Glucose/farmacologia , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Edulcorantes/farmacologia , Cromatografia Líquida de Alta Pressão , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Glucose/metabolismo , Peptídeos/metabolismo , Fosforilação , Estrutura Terciária de Proteína/fisiologia , Espectrometria de Massas por Ionização por Electrospray , Edulcorantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...