Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSystems ; 8(4): e0033323, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37477440

RESUMO

Agrobacteria are a diverse, polyphyletic group of prokaryotes with multipartite genomes capable of transferring DNA into the genomes of host plants, making them an essential tool in plant biotechnology. Despite their utility in plant transformation, genome-wide transcriptional regulation is not well understood across the three main lineages of agrobacteria. Transcription start sites (TSSs) are a necessary component of gene expression and regulation. In this study, we used differential RNA-seq and a TSS identification algorithm optimized on manually annotated TSS, then validated with existing TSS to identify thousands of TSS with nucleotide resolution for representatives of each lineage. We extend upon the 356 TSSs previously reported in Agrobacterium fabrum C58 by identifying 1,916 TSSs. In addition, we completed genomes and phenotyping of Rhizobium rhizogenes C16/80 and Allorhizobium vitis T60/94, identifying 2,650 and 2,432 TSSs, respectively. Parameter optimization was crucial for an accurate, high-resolution view of genome and transcriptional dynamics, highlighting the importance of algorithm optimization in genome-wide TSS identification and genomics at large. The optimized algorithm reduced the number of TSSs identified internal and antisense to the coding sequence on average by 90.5% and 91.9%, respectively. Comparison of TSS conservation between orthologs of the three lineages revealed differences in cell cycle regulation of ctrA as well as divergence of transcriptional regulation of chemotaxis-related genes when grown in conditions that simulate the plant environment. These results provide a framework to elucidate the mechanistic basis and evolution of pathology across the three main lineages of agrobacteria. IMPORTANCE Transcription start sites (TSSs) are fundamental for understanding gene expression and regulation. Agrobacteria, a group of prokaryotes with the ability to transfer DNA into the genomes of host plants, are widely used in plant biotechnology. However, the genome-wide transcriptional regulation of agrobacteria is not well understood, especially in less-studied lineages. Differential RNA-seq and an optimized algorithm enabled identification of thousands of TSSs with nucleotide resolution for representatives of each lineage. The results of this study provide a framework for elucidating the mechanistic basis and evolution of pathology across the three main lineages of agrobacteria. The optimized algorithm also highlights the importance of parameter optimization in genome-wide TSS identification and genomics at large.


Assuntos
Genômica , Transcriptoma , Regiões Promotoras Genéticas , Regulação da Expressão Gênica , Nucleotídeos
2.
Microbiol Spectr ; 11(3): e0037323, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37212656

RESUMO

The pGinger suite of expression plasmids comprises 43 plasmids that will enable precise constitutive and inducible gene expression in a wide range of Gram-negative bacterial species. Constitutive vectors are composed of 16 synthetic constitutive promoters upstream of red fluorescent protein (RFP), with a broad-host-range BBR1 origin and a kanamycin resistance marker. The family also has seven inducible systems (Jungle Express, Psal/NahR, Pm/XylS, Prha/RhaS, LacO1/LacI, LacUV5/LacI, and Ptet/TetR) controlling RFP expression on BBR1/kanamycin plasmid backbones. For four of these inducible systems (Jungle Express, Psal/NahR, LacO1/LacI, and Ptet/TetR), we created variants that utilize the RK2 origin and spectinomycin or gentamicin selection. Relevant RFP expression and growth data have been collected in the model bacterium Escherichia coli as well as Pseudomonas putida. All pGinger vectors are available via the Joint BioEnergy Institute (JBEI) Public Registry. IMPORTANCE Metabolic engineering and synthetic biology are predicated on the precise control of gene expression. As synthetic biology expands beyond model organisms, more tools will be required that function robustly in a wide range of bacterial hosts. The pGinger family of plasmids constitutes 43 plasmids that will enable both constitutive and inducible gene expression in a wide range of nonmodel Proteobacteria.


Assuntos
Escherichia coli , Engenharia Metabólica , Plasmídeos/genética , Regiões Promotoras Genéticas , Escherichia coli/genética , Escherichia coli/metabolismo
3.
Commun Biol ; 5(1): 1363, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36509863

RESUMO

Despite advances in understanding the metabolism of Pseudomonas putida KT2440, a promising bacterial host for producing valuable chemicals from plant-derived feedstocks, a strain capable of producing free fatty acid-derived chemicals has not been developed. Guided by functional genomics, we engineered P. putida to produce medium- and long-chain free fatty acids (FFAs) to titers of up to 670 mg/L. Additionally, by taking advantage of the varying substrate preferences of paralogous native fatty acyl-CoA ligases, we employed a strategy to control FFA chain length that resulted in a P. putida strain specialized in producing medium-chain FFAs. Finally, we demonstrate the production of oleochemicals in these strains by synthesizing medium-chain fatty acid methyl esters, compounds useful as biodiesel blending agents, in various media including sorghum hydrolysate at titers greater than 300 mg/L. This work paves the road to produce high-value oleochemicals and biofuels from cheap feedstocks, such as plant biomass, using this host.


Assuntos
Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Biocombustíveis , Biomassa , Ácidos Graxos/metabolismo
4.
Appl Environ Microbiol ; 88(7): e0243021, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35285712

RESUMO

Pseudomonas putida KT2440 has long been studied for its diverse and robust metabolisms, yet many genes and proteins imparting these growth capacities remain uncharacterized. Using pooled mutant fitness assays, we identified genes and proteins involved in the assimilation of 52 different nitrogen containing compounds. To assay amino acid biosynthesis, 19 amino acid drop-out conditions were also tested. From these 71 conditions, significant fitness phenotypes were elicited in 672 different genes including 100 transcriptional regulators and 112 transport-related proteins. We divide these conditions into 6 classes, and propose assimilatory pathways for the compounds based on this wealth of genetic data. To complement these data, we characterize the substrate range of three promiscuous aminotransferases relevant to metabolic engineering efforts in vitro. Furthermore, we examine the specificity of five transcriptional regulators, explaining some fitness data results and exploring their potential to be developed into useful synthetic biology tools. In addition, we use manifold learning to create an interactive visualization tool for interpreting our BarSeq data, which will improve the accessibility and utility of this work to other researchers. IMPORTANCE Understanding the genetic basis of P. putida's diverse metabolism is imperative for us to reach its full potential as a host for metabolic engineering. Many target molecules of the bioeconomy and their precursors contain nitrogen. This study provides functional evidence linking hundreds of genes to their roles in the metabolism of nitrogenous compounds, and provides an interactive tool for visualizing these data. We further characterize several aminotransferases, lactamases, and regulators, which are of particular interest for metabolic engineering.


Assuntos
Pseudomonas putida , Aminoácidos/metabolismo , Nitrogênio/metabolismo , Fenótipo , Pseudomonas putida/metabolismo , Transaminases/genética , Transaminases/metabolismo
5.
Microbiol Resour Announc ; 10(19)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986076

RESUMO

Mycobacterium sp. strain JC1 DSM 3803 is one of the few known bacteria predicted to possess the xylulose monophosphate (XuMP) pathway of C1 assimilation. The draft genome is 7,921,603 bp with a GC content of 66.88% and will allow more in-depth investigation of this bacterium's unique metabolism.

6.
Appl Environ Microbiol ; 86(21)2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32826213

RESUMO

With its ability to catabolize a wide variety of carbon sources and a growing engineering toolkit, Pseudomonas putida KT2440 is emerging as an important chassis organism for metabolic engineering. Despite advances in our understanding of the organism, many gaps remain in our knowledge of the genetic basis of its metabolic capabilities. The gaps are particularly noticeable in our understanding of both fatty acid and alcohol catabolism, where many paralogs putatively coding for similar enzymes coexist, making biochemical assignment via sequence homology difficult. To rapidly assign function to the enzymes responsible for these metabolisms, we leveraged random barcode transposon sequencing (RB-Tn-Seq). Global fitness analyses of transposon libraries grown on 13 fatty acids and 10 alcohols produced strong phenotypes for hundreds of genes. Fitness data from mutant pools grown on fatty acids of varying chain lengths indicated specific enzyme substrate preferences and enabled us to hypothesize that DUF1302/DUF1329 family proteins potentially function as esterases. From the data, we also postulate catabolic routes for the two biogasoline molecules isoprenol and isopentanol, which are catabolized via leucine metabolism after initial oxidation and activation with coenzyme A (CoA). Because fatty acids and alcohols may serve as both feedstocks and final products of metabolic-engineering efforts, the fitness data presented here will help guide future genomic modifications toward higher titers, rates, and yields.IMPORTANCE To engineer novel metabolic pathways into P. putida, a comprehensive understanding of the genetic basis of its versatile metabolism is essential. Here, we provide functional evidence for the putative roles of hundreds of genes involved in the fatty acid and alcohol metabolism of the bacterium. These data provide a framework facilitating precise genetic changes to prevent product degradation and to channel the flux of specific pathway intermediates as desired.


Assuntos
Álcoois/metabolismo , Elementos de DNA Transponíveis , DNA Bacteriano , Ácidos Graxos/metabolismo , Pseudomonas putida/metabolismo , Redes e Vias Metabólicas , Análise de Sequência de DNA
7.
Microb Cell Fact ; 19(1): 167, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811554

RESUMO

BACKGROUND: Despite the latest advancements in metabolic engineering for genome editing and characterization of host performance, the successful development of robust cell factories used for industrial bioprocesses and accurate prediction of the behavior of microbial systems, especially when shifting from laboratory-scale to industrial conditions, remains challenging. To increase the probability of success of a scale-up process, data obtained from thoroughly performed studies mirroring cellular responses to typical large-scale stimuli may be used to derive crucial information to better understand potential implications of large-scale cultivation on strain performance. This study assesses the feasibility to employ a barcoded yeast deletion library to assess genome-wide strain fitness across a simulated industrial fermentation regime and aims to understand the genetic basis of changes in strain physiology during industrial fermentation, and the corresponding roles these genes play in strain performance. RESULTS: We find that mutant population diversity is maintained through multiple seed trains, enabling large scale fermentation selective pressures to act upon the community. We identify specific deletion mutants that were enriched in all processes tested in this study, independent of the cultivation conditions, which include MCK1, RIM11, MRK1, and YGK3 that all encode homologues of mammalian glycogen synthase kinase 3 (GSK-3). Ecological analysis of beta diversity between all samples revealed significant population divergence over time and showed feed specific consequences of population structure. Further, we show that significant changes in the population diversity during fed-batch cultivations reflect the presence of significant stresses. Our observations indicate that, for this yeast deletion collection, the selection of the feeding scheme which affects the accumulation of the fermentative by-product ethanol impacts the diversity of the mutant pool to a higher degree as compared to the pH of the culture broth. The mutants that were lost during the time of most extreme population selection suggest that specific biological processes may be required to cope with these specific stresses. CONCLUSIONS: Our results demonstrate the feasibility of Bar-seq to assess fermentation associated stresses in yeast populations under industrial conditions and to understand critical stages of a scale-up process where variability emerges, and selection pressure gets imposed. Overall our work highlights a promising avenue to identify genetic loci and biological stress responses required for fitness under industrial conditions.


Assuntos
Reatores Biológicos/microbiologia , Biotecnologia/métodos , Fermentação , Saccharomyces cerevisiae/fisiologia , Biodiversidade , Deleção de Genes , Genes Fúngicos , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Microbiologia Industrial , Engenharia Metabólica , Estresse Fisiológico/genética
8.
Microbiol Resour Announc ; 9(27)2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616638

RESUMO

Agrobacterium fabrum ARqua1 is a hybrid of Agrobacterium fabrum C58C bearing the megaplasmid pRiA4b. ARqua1 is used by many plant researchers to generate transgenic roots. The draft genome of ARqua1 includes a 249,350-bp contig that likely covers all of pRiA4b, and it will be a valuable resource to plant biologists.

9.
Nat Commun ; 11(1): 2931, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32523014

RESUMO

Despite intensive study, plant lysine catabolism beyond the 2-oxoadipate (2OA) intermediate remains unvalidated. Recently we described a missing step in the D-lysine catabolism of Pseudomonas putida in which 2OA is converted to D-2-hydroxyglutarate (2HG) via hydroxyglutarate synthase (HglS), a DUF1338 family protein. Here we solve the structure of HglS to 1.1 Å resolution in substrate-free form and in complex with 2OA. We propose a successive decarboxylation and intramolecular hydroxylation mechanism forming 2HG in a Fe(II)- and O2-dependent manner. Specificity is mediated by a single arginine, highly conserved across most DUF1338 proteins. An Arabidopsis thaliana HglS homolog coexpresses with known lysine catabolism enzymes, and mutants show phenotypes consistent with disrupted lysine catabolism. Structural and biochemical analysis of Oryza sativa homolog FLO7 reveals identical activity to HglS despite low sequence identity. Our results suggest DUF1338-containing enzymes catalyze the same biochemical reaction, exerting the same physiological function across bacteria and eukaryotes.


Assuntos
Ferro/metabolismo , Lisina/metabolismo , Oxigenases/metabolismo , Arabidopsis/metabolismo , Oryza/metabolismo , Pseudomonas putida/metabolismo
10.
J Am Chem Soc ; 142(22): 9896-9901, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32412752

RESUMO

Polyketide synthase (PKS) engineering is an attractive method to generate new molecules such as commodity, fine and specialty chemicals. A significant challenge is re-engineering a partially reductive PKS module to produce a saturated ß-carbon through a reductive loop (RL) exchange. In this work, we sought to establish that chemoinformatics, a field traditionally used in drug discovery, offers a viable strategy for RL exchanges. We first introduced a set of donor RLs of diverse genetic origin and chemical substrates  into the first extension module of the lipomycin PKS (LipPKS1). Product titers of these engineered unimodular PKSs correlated with chemical structure similarity between the substrate of the donor RLs and recipient LipPKS1, reaching a titer of 165 mg/L of short-chain fatty acids produced by the host Streptomyces albus J1074. Expanding this method to larger intermediates that require bimodular communication, we introduced RLs of divergent chemosimilarity into LipPKS2 and determined triketide lactone production. Collectively, we observed a statistically significant correlation between atom pair chemosimilarity and production, establishing a new chemoinformatic method that may aid in the engineering of PKSs to produce desired, unnatural products.


Assuntos
Biologia Computacional , Policetídeo Sintases/química , Engenharia de Proteínas , Estrutura Molecular , Policetídeo Sintases/metabolismo
11.
Nat Chem Biol ; 16(8): 857-865, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32424304

RESUMO

Agricultural biotechnology strategies often require the precise regulation of multiple genes to effectively modify complex plant traits. However, most efforts are hindered by a lack of characterized tools that allow for reliable and targeted expression of transgenes. We have successfully engineered a library of synthetic transcriptional regulators that modulate expression strength in planta. By leveraging orthogonal regulatory systems from Saccharomyces spp., we have developed a strategy for the design of synthetic activators, synthetic repressors, and synthetic promoters and have validated their use in Nicotiana benthamiana and Arabidopsis thaliana. This characterization of contributing genetic elements that dictate gene expression represents a foundation for the rational design of refined synthetic regulators. Our findings demonstrate that these tools provide variation in transcriptional output while enabling the concerted expression of multiple genes in a tissue-specific and environmentally responsive manner, providing a basis for generating complex genetic circuits that process endogenous and environmental stimuli.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Elementos Reguladores de Transcrição/genética , Arabidopsis/genética , Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Regiões Promotoras Genéticas/genética , Saccharomyces/enzimologia , Saccharomyces/genética , Nicotiana/genética , Fatores de Transcrição/metabolismo
12.
Metab Eng Commun ; 10: e00119, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32280587

RESUMO

Pseudomonas putida is a saprophytic bacterium with robust metabolisms and strong solvent tolerance making it an attractive host for metabolic engineering and bioremediation. Due to its diverse carbon metabolisms, its genome encodes an array of proteins and enzymes that can be readily applied to produce valuable products. In this work we sought to identify design principles and bottlenecks in the production of type III polyketide synthase (T3PKS)-derived compounds in P. putida. T3PKS products are widely used as nutraceuticals and medicines and often require aromatic starter units, such as coumaroyl-CoA, which is also an intermediate in the native coumarate catabolic pathway of P. putida. Using a randomly barcoded transposon mutant (RB-TnSeq) library, we assayed gene functions for a large portion of aromatic catabolism, confirmed known pathways, and proposed new annotations for two aromatic transporters. The 1,3,6,8-tetrahydroxynapthalene synthase of Streptomyces coelicolor (RppA), a microbial T3PKS, was then used to rapidly assay growth conditions for increased T3PKS product accumulation. The feruloyl/coumaroyl CoA synthetase (Fcs) of P. putida was used to supply coumaroyl-CoA for the curcuminoid synthase (CUS) of Oryza sativa, a plant T3PKS. We identified that accumulation of coumaroyl-CoA in this pathway results in extended growth lag times in P. putida. Deletion of the second step in coumarate catabolism, the enoyl-CoA hydratase-lyase (Ech), resulted in increased production of the type III polyketide bisdemethoxycurcumin.

13.
ACS Synth Biol ; 9(3): 468-474, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32149502

RESUMO

Climate change necessitates the development of CO2 neutral or negative routes to chemicals currently produced from fossil carbon. In this paper we demonstrate a pathway from the renewable resource glucose to next generation biofuel isopentanol by pairing the isovaleryl-CoA biosynthesis pathway from Myxococcus xanthus and a butyryl-CoA reductase from Clostridium acetobutylicum. The best plasmid and Escherichia coli strain combination makes 80.50 ± 8.08 (SD) mg/L of isopentanol after 36 h under microaerobic conditions with an oleyl alcohol overlay. In addition, the system also shows a strong preference for isopentanol production over prenol in microaerobic conditions. Finally, the pathway requires zero adenosine triphosphate and can be paired theoretically with nonoxidative glycolysis, the combination being redox balanced from glucose thus avoiding unnecessary carbon loss as CO2. These pathway properties make the isovaleryl-CoA pathway an attractive isopentanol production route for further optimization.


Assuntos
Trifosfato de Adenosina/metabolismo , Biocombustíveis , Carbono/metabolismo , Myxococcus xanthus/metabolismo , Pentanóis/metabolismo , Biologia Sintética/métodos , Acil Coenzima A/metabolismo , Clostridium acetobutylicum/enzimologia , Clostridium acetobutylicum/genética , Escherichia coli/genética , Hidroliases/genética , Hidroliases/metabolismo , Modelos Biológicos , Myxococcus xanthus/genética , Plasmídeos/genética
14.
Biodes Res ; 2020: 8189219, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-37849895

RESUMO

Agrobacterium tumefaciens is an important tool in plant biotechnology due to its natural ability to transfer DNA into the genomes of host plants. Genetic manipulations of A. tumefaciens have yielded considerable advances in increasing transformational efficiency in a number of plant species and cultivars. Moreover, there is overwhelming evidence that modulating the expression of various mediators of A. tumefaciens virulence can lead to more successful plant transformation; thus, the application of synthetic biology to enable targeted engineering of the bacterium may enable new opportunities for advancing plant biotechnology. In this review, we highlight engineering targets in both A. tumefaciens and plant hosts that could be exploited more effectively through precision genetic control to generate high-quality transformation events in a wider range of host plants. We then further discuss the current state of A. tumefaciens and plant engineering with regard to plant transformation and describe how future work may incorporate a rigorous synthetic biology approach to tailor strains of A. tumefaciens used in plant transformation.

15.
J Am Chem Soc ; 142(2): 835-846, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31793780

RESUMO

Terminal alkenes are easily derivatized, making them desirable functional group targets for polyketide synthase (PKS) engineering. However, they are rarely encountered in natural PKS systems. One mechanism for terminal alkene formation in PKSs is through the activity of an acyl-CoA dehydrogenase (ACAD). Herein, we use biochemical and structural analysis to understand the mechanism of terminal alkene formation catalyzed by an γ,δ-ACAD from the biosynthesis of the polyketide natural product FK506, TcsD. While TcsD is homologous to canonical α,ß-ACADs, it acts regioselectively at the γ,δ-position and only on α,ß-unsaturated substrates. Furthermore, this regioselectivity is controlled by a combination of bulky residues in the active site and a lateral shift in the positioning of the FAD cofactor within the enzyme. Substrate modeling suggests that TcsD utilizes a novel set of hydrogen bond donors for substrate activation and positioning, preventing dehydrogenation at the α,ß position of substrates. From the structural and biochemical characterization of TcsD, key residues that contribute to regioselectivity and are unique to the protein family were determined and used to identify other putative γ,δ-ACADs that belong to diverse natural product biosynthetic gene clusters. These predictions are supported by the demonstration that a phylogenetically distant homologue of TcsD also regioselectively oxidizes α,ß-unsaturated substrates. This work exemplifies a powerful approach to understand unique enzymatic reactions and will facilitate future enzyme discovery, inform enzyme engineering, and aid natural product characterization efforts.


Assuntos
Acil-CoA Desidrogenase/química , Bactérias/enzimologia , Conformação Proteica
16.
ACS Synth Biol ; 9(1): 53-62, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31841635

RESUMO

Caprolactam is an important polymer precursor to nylon traditionally derived from petroleum and produced on a scale of 5 million tons per year. Current biological pathways for the production of caprolactam are inefficient with titers not exceeding 2 mg/L, necessitating novel pathways for its production. As development of novel metabolic routes often require thousands of designs and result in low product titers, a highly sensitive biosensor for the final product has the potential to rapidly speed up development times. Here we report a highly sensitive biosensor for valerolactam and caprolactam from Pseudomonas putida KT2440 which is >1000× more sensitive to an exogenous ligand than previously reported sensors. Manipulating the expression of the sensor oplR (PP_3516) substantially altered the sensing parameters, with various vectors showing Kd values ranging from 700 nM (79.1 µg/L) to 1.2 mM (135.6 mg/L). Our most sensitive construct was able to detect in vivo production of caprolactam above background at ∼6 µg/L. The high sensitivity and range of OplR is a powerful tool toward the development of novel routes to the biological synthesis of caprolactam.


Assuntos
Técnicas Biossensoriais/métodos , Caprolactama/metabolismo , Lactamas/metabolismo , Engenharia Metabólica/métodos , Pseudomonas putida/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ligantes , Plasmídeos/genética
17.
Appl Environ Microbiol ; 86(3)2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31732572

RESUMO

The wild chili pepper Capsicum chacoense produces the spicy defense compounds known as capsaicinoids, including capsaicin and dihydrocapsaicin, which are antagonistic to the growth of fungal pathogens. Compared to other microbes, fungi isolated from infected seeds of C. chacoense possess much higher levels of tolerance of these spicy compounds, having their growth slowed but not entirely inhibited. Previous research has shown capsaicinoids inhibit microbes by disrupting ATP production by binding NADH dehydrogenase in the electron transport chain (ETC) and, thus, throttling oxidative phosphorylation (OXPHOS). Capsaicinoids may also disrupt cell membranes. Here, we investigate capsaicinoid tolerance in fungal seed pathogens isolated from C. chacoense We selected 16 fungal isolates from four ascomycete genera (Alternaria, Colletotrichum, Fusarium, and Phomopsis). Using relative growth rate as a readout for tolerance, fungi were challenged with ETC inhibitors to infer whether fungi possess alternative respiratory enzymes and whether effects on the ETC fully explained inhibition by capsaicinoids. In all isolates, we found evidence for at least one alternative NADH dehydrogenase. In many isolates, we also found evidence for an alternative oxidase. These data suggest that wild-plant pathogens may be a rich source of alternative respiratory enzymes. We further demonstrate that these fungal isolates are capable of the breakdown of capsaicinoids. Finally, we determine that the OXPHOS theory may describe a weak primary mechanism by which dihydrocapsaicin, but not capsaicin, slows fungal growth. Our findings suggest that capsaicinoids likely disrupt membranes, in addition to energy poisoning, with implications for microbiology and human health.IMPORTANCE Plants make chemical compounds to protect themselves. For example, chili peppers produce the spicy compound capsaicin to inhibit pathogen damage and animal feeding. In humans, capsaicin binds to a membrane channel protein, creating the sensation of heat, while in microbes, capsaicin limits energy production by binding respiratory enzymes. However, some data suggest that capsaicin also disrupts membranes. Here, we studied fungal pathogens (Alternaria, Colletotrichum, Fusarium, and Phomopsis) isolated from a wild chili pepper, Capsicum chacoense By measuring growth rates in the presence of antibiotics with known respiratory targets, we inferred that wild-plant pathogens might be rich in alternative respiratory enzymes. A zone of clearance around the colonies, as well as liquid chromatography-mass spectrometry data, further indicated that these fungi can break down capsaicin. Finally, the total inhibitory effect of capsaicin was not fully explained by its effect on respiratory enzymes. Our findings lend credence to studies proposing that capsaicin may disrupt cell membranes, with implications for microbiology, as well as human health.


Assuntos
Ascomicetos/metabolismo , Capsaicina/análogos & derivados , Capsaicina/metabolismo , Capsicum/microbiologia , Sementes/microbiologia , Antibiose , Especificidade da Espécie
18.
Metab Eng Commun ; 9: e00098, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31720214

RESUMO

Pseudomonas putida is a promising bacterial chassis for metabolic engineering given its ability to metabolize a wide array of carbon sources, especially aromatic compounds derived from lignin. However, this omnivorous metabolism can also be a hindrance when it can naturally metabolize products produced from engineered pathways. Herein we show that P. putida is able to use valerolactam as a sole carbon source, as well as degrade caprolactam. Lactams represent important nylon precursors, and are produced in quantities exceeding one million tons per year (Zhang et al., 2017). To better understand this metabolism we use a combination of Random Barcode Transposon Sequencing (RB-TnSeq) and shotgun proteomics to identify the oplBA locus as the likely responsible amide hydrolase that initiates valerolactam catabolism. Deletion of the oplBA genes prevented P. putida from growing on valerolactam, prevented the degradation of valerolactam in rich media, and dramatically reduced caprolactam degradation under the same conditions. Deletion of oplBA, as well as pathways that compete for precursors L-lysine or 5-aminovalerate, increased the titer of valerolactam from undetectable after 48 h of production to ~90 mg/L. This work may serve as a template to rapidly eliminate undesirable metabolism in non-model hosts in future metabolic engineering efforts.

19.
ACS Synth Biol ; 8(10): 2385-2396, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31518500

RESUMO

A significant bottleneck in synthetic biology involves screening large genetically encoded libraries for desirable phenotypes such as chemical production. However, transcription factor-based biosensors can be leveraged to screen thousands of genetic designs for optimal chemical production in engineered microbes. In this study we characterize two glutarate sensing transcription factors (CsiR and GcdR) from Pseudomonas putida. The genomic contexts of csiR homologues were analyzed, and their DNA binding sites were bioinformatically predicted. Both CsiR and GcdR were purified and shown to bind upstream of their coding sequencing in vitro. CsiR was shown to dissociate from DNA in vitro when exogenous glutarate was added, confirming that it acts as a genetic repressor. Both transcription factors and cognate promoters were then cloned into broad host range vectors to create two glutarate biosensors. Their respective sensing performance features were characterized, and more sensitive derivatives of the GcdR biosensor were created by manipulating the expression of the transcription factor. Sensor vectors were then reintroduced into P. putida and evaluated for their ability to respond to glutarate and various lysine metabolites. Additionally, we developed a novel mathematical approach to describe the usable range of detection for genetically encoded biosensors, which may be broadly useful in future efforts to better characterize biosensor performance.


Assuntos
Glutaratos/metabolismo , Lisina/metabolismo , Pseudomonas putida/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Engenharia Metabólica/métodos , Regiões Promotoras Genéticas/genética , Pseudomonas putida/genética , Biologia Sintética/métodos
20.
mBio ; 10(3)2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31064836

RESUMO

Despite intensive study for 50 years, the biochemical and genetic links between lysine metabolism and central metabolism in Pseudomonas putida remain unresolved. To establish these biochemical links, we leveraged random barcode transposon sequencing (RB-TnSeq), a genome-wide assay measuring the fitness of thousands of genes in parallel, to identify multiple novel enzymes in both l- and d-lysine metabolism. We first describe three pathway enzymes that catabolize l-2-aminoadipate (l-2AA) to 2-ketoglutarate (2KG), connecting d-lysine to the TCA cycle. One of these enzymes, P. putida 5260 (PP_5260), contains a DUF1338 domain, representing a family with no previously described biological function. Our work also identified the recently described coenzyme A (CoA)-independent route of l-lysine degradation that results in metabolization to succinate. We expanded on previous findings by demonstrating that glutarate hydroxylase CsiD is promiscuous in its 2-oxoacid selectivity. Proteomics of selected pathway enzymes revealed that expression of catabolic genes is highly sensitive to the presence of particular pathway metabolites, implying intensive local and global regulation. This work demonstrated the utility of RB-TnSeq for discovering novel metabolic pathways in even well-studied bacteria, as well as its utility a powerful tool for validating previous research.IMPORTANCEP. putida lysine metabolism can produce multiple commodity chemicals, conferring great biotechnological value. Despite much research, the connection of lysine catabolism to central metabolism in P. putida remained undefined. Here, we used random barcode transposon sequencing to fill the gaps of lysine metabolism in P. putida We describe a route of 2-oxoadipate (2OA) catabolism, which utilizes DUF1338-containing protein P. putida 5260 (PP_5260) in bacteria. Despite its prevalence in many domains of life, DUF1338-containing proteins have had no known biochemical function. We demonstrate that PP_5260 is a metalloenzyme which catalyzes an unusual route of decarboxylation of 2OA to d-2-hydroxyglutarate (d-2HG). Our screen also identified a recently described novel glutarate metabolic pathway. We validate previous results and expand the understanding of glutarate hydroxylase CsiD by showing that can it use either 2OA or 2KG as a cosubstrate. Our work demonstrated that biological novelty can be rapidly identified using unbiased experimental genetics and that RB-TnSeq can be used to rapidly validate previous results.


Assuntos
Aptidão Genética , Lisina/metabolismo , Pseudomonas putida/enzimologia , Pseudomonas putida/genética , Redes e Vias Metabólicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...