Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37627079

RESUMO

Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor in adults. Despite modern, multimodal therapeutic options of surgery, chemotherapy, tumor-treating fields (TTF), and radiotherapy, the 5-year survival is below 10%. In order to develop new therapies, better preclinical models are needed that mimic the complexity of a tumor. In this work, we established a novel three-dimensional (3D) model for patient-derived GBM cell lines. To analyze the volume and growth pattern of primary GBM cells in 3D culture, a CoSeedisTM culture system was used, and radiation sensitivity in comparison to conventional 2D colony formation assay (CFA) was analyzed. Both culture systems revealed a dose-dependent reduction in survival, but the high variance in colony size and shape prevented reliable evaluation of the 2D cultures. In contrast, the size of 3D spheroids could be measured accurately. Immunostaining of spheroids grown in the 3D culture system showed an increase in the DNA double-strand-break marker γH2AX one hour after irradiation. After 24 h, a decrease in DNA damage was observed, indicating active repair mechanisms. In summary, this new translational 3D model may better reflect the tumor complexity and be useful for analyzing the growth, radiosensitivity, and DNA repair of patient-derived GBM cells.

2.
Int J Hyperthermia ; 40(1): 2244208, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37592457

RESUMO

PURPOSE: The heating characteristics of water-filtered infrared-A (wIRA) radiation were investigated in vivo in two body regions of healthy humans according to the quality standards of the European Society for Hyperthermic Oncology (ESHO) using an irradiance (infrared-A) of 146 W m-2 as recommended for clinical superficial hyperthermia (HT). METHODS: wIRA was applied to the abdominal wall and lumbar region for 60 min. Skin surface temperature was limited to ≤43 °C. Tissue temperatures were measured invasively at 1-min intervals before, during and after wIRA exposure using five fiber-optical probes at depths of 1-20 mm. RESULTS: Significant differences between body regions occurred during the heating-up phase at depths of 5-15 mm. Thermal steady states were reached at depths ≤5 mm after exposures of 5-6 min, and ≤20 mm after 20 min. On average, the minimum requirements of ESHO were exceeded in both regions by the following factors: ≈3 for the heating rate, ≈2 for the specific absorption rate and ≈1.4 for the temperature rise. Tissue depths with T90 ≥ 40 °C and T50 > 41 °C were ≤10 mm, and ≤20 mm for Tmax ≤ 43 °C. The temperature decay time after termination of irradiation was 1-5 min. Corresponding temperatures were ≤42.2 °C for CEM43 and ≤41.8 °C for CEM43T90, i.e., they are inadequate for direct thermal cell killing. CONCLUSIONS: Thermography-controlled wIRA-HT complies with the ESHO criteria for superficial HT as a radiosensitizer and avoids the risk of thermal skin toxicity.


Assuntos
Parede Abdominal , Hipertermia Induzida , Humanos , Calefação , Hipertermia
3.
Front Oncol ; 13: 1180642, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37384298

RESUMO

Objective: Head and neck cancer (HNC) accounts for almost 890,000 new cases per year. Radiotherapy (RT) is used to treat the majority of these patients. A common side-effect of RT is the onset of oral mucositis, which decreases the quality of life and represents the major dose-limiting factor in RT. To understand the origin of oral mucositis, the biological mechanisms post-ionizing radiation (IR) need to be clarified. Such knowledge is valuable to develop new treatment targets for oral mucositis and markers for the early identification of "at-risk" patients. Methods: Primary keratinocytes from healthy volunteers were biopsied, irradiated in vitro (0 and 6 Gy), and subjected to mass spectrometry-based analyses 96 h after irradiation. Web-based tools were used to predict triggered biological pathways. The results were validated in the OKF6 cell culture model. Immunoblotting and mRNA validation was performed and cytokines present in cell culture media post-IR were quantified. Results: Mass spectrometry-based proteomics identified 5879 proteins in primary keratinocytes and 4597 proteins in OKF6 cells. Amongst them, 212 proteins in primary keratinocytes and 169 proteins in OKF6 cells were differentially abundant 96 h after 6 Gy irradiation compared to sham-irradiated controls. In silico pathway enrichment analysis predicted interferon (IFN) response and DNA strand elongation pathways as mostly affected pathways in both cell systems. Immunoblot validations showed a decrease in minichromosome maintenance (MCM) complex proteins 2-7 and an increase in IFN-associated proteins STAT1 and ISG15. In line with affected IFN signalling, mRNA levels of IFNß and interleukin 6 (IL-6) increased significantly following irradiation and also levels of secreted IL-1ß, IL-6, IP-10, and ISG15 were elevated. Conclusion: This study has investigated biological mechanisms in keratinocytes post-in vitro ionizing radiation. A common radiation signature in keratinocytes was identified. The role of IFN response in keratinocytes along with increased levels of pro-inflammatory cytokines and proteins could hint towards a possible mechanism for oral mucositis.

4.
Cancers (Basel) ; 15(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36900190

RESUMO

(1) Background: Mild hyperthermia (mHT, 39-42 °C) is a potent cancer treatment modality when delivered in conjunction with radiotherapy. mHT triggers a series of therapeutically relevant biological mechanisms, e.g., it can act as a radiosensitizer by improving tumor oxygenation, the latter generally believed to be the commensurate result of increased blood flow, and it can positively modulate protective anticancer immune responses. However, the extent and kinetics of tumor blood flow (TBF) changes and tumor oxygenation are variable during and after the application of mHT. The interpretation of these spatiotemporal heterogeneities is currently not yet fully clarified. (2) Aim and methods: We have undertaken a systematic literature review and herein provide a comprehensive insight into the potential impact of mHT on the clinical benefits of therapeutic modalities such as radio- and immuno-therapy. (3) Results: mHT-induced increases in TBF are multifactorial and differ both spatially and with time. In the short term, changes are preferentially caused by vasodilation of co-opted vessels and of upstream normal tissue vessels as well as by improved hemorheology. Sustained TBF increases are thought to result from a drastic reduction of interstitial pressure, thus restoring adequate perfusion pressures and/or HIF-1α- and VEGF-mediated activation of angiogenesis. The enhanced oxygenation is not only the result of mHT-increased TBF and, thus, oxygen availability but also of heat-induced higher O2 diffusivities, acidosis- and heat-related enhanced O2 unloading from red blood cells. (4) Conclusions: Enhancement of tumor oxygenation achieved by mHT cannot be fully explained by TBF changes alone. Instead, a series of additional, complexly linked physiological mechanisms are crucial for enhancing tumor oxygenation, almost doubling the initial O2 tensions in tumors.

5.
Strahlenther Onkol ; 199(5): 436-444, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36038671

RESUMO

PURPOSE: The combination of hyperthermia (HT) with radio(chemo)therapy or chemotherapy (CT) is an established treatment strategy for specific indications. Its application in routine clinical practice in Europe depends on regulatory and local conditions. We conducted a survey among European clinical centers to determine current practice of HT. METHODS: A questionnaire with 22 questions was sent to 24 European HT centers. The questions were divided into two main categories. The first category assessed how many patients are treated with HT in combination with radio(chemo)therapy or CT for specific indications per year. The second category addressed which hyperthermia parameters are recorded. Analysis was performed using descriptive methods. RESULTS: The response rate was 71% (17/24) and 16 centers were included in this evaluation. Annually, these 16 centers treat approximately 637 patients using HT in combination with radio(chemo)therapy or CT. On average, 34% (range: 3-100%) of patients are treated in clinical study protocols. Temperature readings and the time interval between HT and radio(chemo)therapy or CT are recorded in 13 (81%) and 9 (56%) centers, respectively. The thermal dose quality parameter "cumulative equivalent minutes at 43 °C" (CEM43°C) is only evaluated in five (31%) centers for each HT session. With regard to treatment sequence, 8 (50%) centers administer HT before radio(chemo)therapy and the other 8 in the reverse order. CONCLUSION: There is a significant heterogeneity among European HT centers as to the indications treated and the recording of thermometric parameters. More evidence from clinical studies is necessary to achieve standardization of HT practice.


Assuntos
Hipertermia Induzida , Humanos , Hipertermia Induzida/métodos , Terapia Combinada , Europa (Continente)
6.
Front Oncol ; 13: 1275222, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38169879

RESUMO

Introduction: Breast cancer is globally the leading cancer in women, and despite the high 5-year survival rate the most frequent cause of cancer related deaths. Surgery, systemic therapy and radiotherapy are the three pillars of curative breast cancer treatment. However, locoregional recurrences frequently occur after initial treatment and are often challenging to treat, amongst others due to high doses of previous radiotherapy treatments. Radiotherapy can be combined with local hyperthermia to sensitize tumor cells to radiation and thereby significantly reduce the required radiation dose. Therefore, the combination treatment of mild local hyperthermia, i.e. locally heating of the tissue to 39-43°C, and re-irradiation with a reduced total dose is a relevant treatment option for previously irradiated patients. The mechanisms of this effect in the course of the therapy are to date not well understood and will be investigated in the HISTOTHERM study. Methods and analyses: Patients with local or (loco)regional recurrent breast cancer with macroscopic tumors are included in the study. Local tumor control is evaluated clinically and histologically during the course of a combination treatment of 60 minutes mild superficial hyperthermia (39 - 43°C) using water-filtered infrared A (wIRA) irradiation, immediately followed by hypofractionated re-irradiation with a total dose of 20-24 Gy, administered in weekly doses of 4 Gy. Tumor and tumor stroma biopsies as well as blood samples will be collected prior to treatment, during therapy (at a dose of 12 Gy) and in the follow-up to monitor therapy response. The treatment represents the standard operating procedure for hyperthermia plus re-irradiation. Various tissue and blood-based markers are analyzed. We aim at pinpointing key mechanisms and markers for therapy response which may help guiding treatment decisions in future. In addition, quality of life in the course of treatment will be assessed and survival data will be evaluated. Registration: The study is registered at the German Clinical Trials Register, Deutsches Register Klinischer Studien (DRKS00029221).

7.
Adv Exp Med Biol ; 1395: 255-261, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36527646

RESUMO

Clinical trials have shown that mild hyperthermia (HT) serves as an adjunct to cancer treatments such as chemo- and radiotherapy. Recently, a high efficacy of mild HT immediately followed by hypofractionated radiotherapy (RT) in treatment of recurrent breast cancer has been documented if temperatures of 39-43 °C are achieved for 40-60 min. In the present study, temperature and oxygenation profiles were measured in superficial tissues of healthy volunteers exposed to water-filtered infrared-A- (wIRA)- irradiation, to verify that adequate thermal doses together with the improved tumor oxygenation necessary for radiosensitisation are obtained. Experiments were performed using a wIRA-system equipped with two wIRA-radiators, each with a thermography camera for real-time monitoring of the skin surface temperature. Temperatures within the abdominal wall were measured with fibre optic sensors at defined tissue depths (subepidermal, and 1-20 mm inside the tissue). The corresponding tissue pO2 values were assessed with fluorometric microsensors. In selected situations, hyperspectral tissue imaging was used to visualise the oxygenation status of normal skin and superficial tumours in patients. Pre-treatment skin surface temperature was 34.6 °C. Upon wIRA exposure, average skin surface temperatures reached 41.6 °C within 5-12 min. Maximum tissue temperatures of 41.8 °C were found at a tissue depth of 1 mm, with a steady decline in deeper tissue layers (41.6 °C @ 5 mm, 40.8 °C @ 10 mm, 40.6 °C @ 15 mm, and 40.1 °C @ 20 mm). Effective HT levels ≥39 °C were established in tissue depths up to 25 mm. Tissue heating was accompanied by a significant increase in tissue pO2 values [e.g., at a tissue depth of 13 mm mean pO2 rose from 46 mmHg to 81 mmHg (@ T = 40.5 °C). In the post-heating phase (+ 5 min), pO2 was 79 mmHg (@ T = 38 °C) and 15 min post-heat pO2 was 72 mmHg (@ T = 36.8 °C)]. pO2 values remained elevated for 30-60 min post-heat. Non-invasive monitoring of normal skin and of recurrent breast cancers confirmed the improved O2 status by wIRA-HT. In conclusion, wIRA-irradiation enables effective tissue heating (T = 39-43 °C) associated with distinct increases in blood flow and pO2. These adjustments unequivocally meet the requirement for effective radiosensitisation.


Assuntos
Neoplasias da Mama , Hipertermia Induzida , Humanos , Feminino , Hipertermia Induzida/métodos , Recidiva Local de Neoplasia , Pele , Tela Subcutânea , Temperatura Cutânea , Neoplasias da Mama/radioterapia
8.
Int J Mol Sci ; 23(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35887032

RESUMO

Radiotherapy of head-and-neck squamous cell carcinoma (HNSCC) can cause considerable normal tissue injuries, and mesenchymal stromal cells (MSCs) have been shown to aid regeneration of irradiation-damaged normal tissues. However, utilization of MSC-based treatments for HNSCC patients undergoing radiotherapy is hampered by concerns regarding potential radioprotective effects. We therefore investigated the influence of MSCs on the radiosensitivity of HNSCCs. Several human papillomavirus (HPV)-negative and HPV-positive HNSCCs were co-cultured with human bone marrow-derived MSCs using two-dimensional and three-dimensional assays. Clonogenic survival, proliferation, and viability of HNSCCs after radiotherapy were assessed depending on MSC co-culture. Flow cytometry analyses were conducted to examine the influence of MSCs on irradiation-induced cell cycle distribution and apoptosis induction in HNSCCs. Immunofluorescence stainings of γH2AX were conducted to determine the levels of residual irradiation-induced DNA double-strand breaks. Levels of connective tissue growth factor (CTGF), a multifunctional pro-tumorigenic cytokine, were analyzed using enzyme-linked immunosorbent assays. Neither direct MSC co-culture nor MSC-conditioned medium exerted radioprotective effects on HNSCCs as determined by clonogenic survival, proliferation, and viability assays. Consistently, three-dimensional microwell arrays revealed no radioprotective effects of MSCs. Irradiation resulted in a G2/M arrest of HNSCCs at 96 h independently of MSC co-culture. HNSCCs' apoptosis rates were increased by irradiation irrespective of MSCs. Numbers of residual γH2AX foci after irradiation with 2 or 8 Gy were comparable between mono- and co-cultures. MSC mono-cultures and HNSCC-MSC co-cultures exhibited comparable CTGF levels. We did not detect radioprotective effects of human MSCs on HNSCCs. Our results suggest that the usage of MSC-based therapies for radiotherapy-related toxicities in HNSCC patients may be safe in the context of absent radioprotection.


Assuntos
Neoplasias de Cabeça e Pescoço , Células-Tronco Mesenquimais , Infecções por Papillomavirus , Apoptose , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
9.
Clin Transl Radiat Oncol ; 33: 120-127, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35243023

RESUMO

BACKGROUND: Tumor hypoxia worsens the prognosis of head-and-neck squamous cell carcinoma (HNSCC) patients, and plasma hypoxia markers may be used as biomarkers for radiotherapy personalization. We therefore investigated the role of the hypoxia-associated plasma proteins osteopontin, galectin-3, vascular endothelial growth factor (VEGF) and connective tissue growth factor (CTGF) as surrogate markers for imaging-based tumor hypoxia. METHODS: Serial blood samples of HNSCC patients receiving chemoradiation within a prospective trial were analyzed for osteopontin, galectin-3, VEGF and CTGF concentrations. Tumor hypoxia was quantified in treatment weeks 0, 2 and 5 using [18F]FMISO PET/CT. The association between PET-defined hypoxia and the plasma markers was determined using Pearson's correlation analyses. Receiver-operating characteristic analyses were conducted to reveal the diagnostic value of the hypoxia markers. RESULTS: Baseline osteopontin (r = 0.579, p < 0.01) and galectin-3 (r = 0.429, p < 0.05) correlated with the hypoxic subvolume (HSV) prior to radiotherapy, whereas VEGF (r = 0.196, p = 0.36) and CTGF (r = 0.314, p = 0.12) showed no association. Patients with an HSV > 1 mL in week 2 exhibited increased VEGF (p < 0.05) and CTGF (p < 0.05) levels in week 5. Pretherapeutic osteopontin levels were higher in patients exhibiting residual hypoxia at the end of treatment (104.7 vs. 60.8 ng/mL, p < 0.05) and could therefore predict residual hypoxia (AUC = 0.821, 95% CI 0.604-1.000, p < 0.05). CONCLUSION: In this exploratory analysis, osteopontin correlated with the initial HSV and with residual tumor hypoxia; therefore, there may be a rationale to study hypoxic modification based on osteopontin levels. However, as plasma hypoxia markers do not correspond to any spatial information of tumor hypoxia, they have limitations regarding the replacement of [18F]FMISO PET-based focal treatments. The results need to be validated in larger patient cohorts to draw definitive conclusions.

10.
J Cancer Res Clin Oncol ; 148(5): 1045-1055, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35072775

RESUMO

PURPOSE: Multiple myeloma (MM) remains an incurable hematologic malignancy which ultimately develops drug resistance and evades treatment. Despite substantial therapeutic advances over the past years, the clinical failure rate of preclinically promising anti-MM drugs remains substantial. More realistic in vitro models are thus required to better predict clinical efficacy of a preclinically active compound. METHODS: Here, we report on the establishment of a conical agarose 3D co-culture platform for the preclinical propagation of primary MM cells ex vivo. Cell growth was compared to yet established 2D and liquid overlay systems. MM cell lines (MMCL: RPMI-8226, U266, OPM-2) and primary patient specimens were tested. Drug sensitivity was examined by exploring the cytotoxic effect of bortezomib and the deubiquitinase inhibitor auranofin under various conditions. RESULTS: In contrast to 2D and liquid overlay, cell proliferation in the 3D array followed a sigmoidal curve characterized by an initial growth delay but more durable proliferation of MMCL over 12 days of culture. Primary MM specimens did not expand in ex vivo monoculture, but required co-culture support by a human stromal cell line (HS-5, MSP-1). HS-5 induced a > fivefold increase in cluster volume and maintained long-term viability of primary MM cells for up to 21 days. Bortezomib and auranofin induced less cytotoxicity under 3D vs. 2D condition and in co- vs. monoculture, respectively. CONCLUSIONS: This study introduces a novel model that is capable of long-term propagation and drug testing of primary MM specimens ex vivo overcoming some of the pitfalls of currently available in vitro models.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Auranofina/farmacologia , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Linhagem Celular Tumoral , Técnicas de Cocultura , Humanos , Mieloma Múltiplo/patologia
11.
Eur J Nucl Med Mol Imaging ; 49(5): 1650-1660, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34773163

RESUMO

PURPOSE: Intratumoral hypoxia increases resistance of head-and-neck squamous cell carcinoma (HNSCC) to radiotherapy. [18F]FMISO PET imaging enables noninvasive hypoxia monitoring, though requiring complex logistical efforts. We investigated the role of plasma interleukin-6 (IL-6) as potential surrogate parameter for intratumoral hypoxia in HNSCC using [18F]FMISO PET/CT as reference. METHODS: Within a prospective trial, serial blood samples of 27 HNSCC patients undergoing definitive chemoradiation were collected to analyze plasma IL-6 levels. Intratumoral hypoxia was assessed in treatment weeks 0, 2, and 5 using [18F]FMISO PET/CT imaging. The association between PET-based hypoxia and IL-6 was examined using Pearson's correlation and multiple regression analyses, and the diagnostic power of IL-6 for tumor hypoxia response prediction was determined with receiver-operating characteristic analyses. RESULTS: Mean IL-6 concentrations were 15.1, 19.6, and 31.0 pg/mL at baseline, week 2 and week 5, respectively. Smoking (p=0.050) and reduced performance status (p=0.011) resulted in higher IL-6 levels, whereas tumor (p=0.427) and nodal stages (p=0.334), tumor localization (p=0.439), and HPV status (p=0.294) had no influence. IL-6 levels strongly correlated with the intratumoral hypoxic subvolume during treatment (baseline: r=0.775, p<0.001; week 2: r=0.553, p=0.007; week 5: r=0.734, p<0.001). IL-6 levels in week 2 were higher in patients with absent early tumor hypoxia response (p=0.016) and predicted early hypoxia response (AUC=0.822, p=0.031). Increased IL-6 levels at week 5 resulted in a trend towards reduced progression-free survival (p=0.078) and overall survival (p=0.013). CONCLUSION: Plasma IL-6 is a promising surrogate marker for tumor hypoxia dynamics in HNSCC patients and may facilitate hypoxia-directed personalized radiotherapy concepts. TRIAL REGISTRATION: The prospective trial was registered in the German Clinical Trial Register (DRKS00003830). Registered 20 August 2015.


Assuntos
Neoplasias de Cabeça e Pescoço , Interleucina-6 , Biomarcadores , Hipóxia Celular , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/terapia , Humanos , Hipóxia/diagnóstico por imagem , Misonidazol , Projetos Piloto , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons , Estudos Prospectivos , Compostos Radiofarmacêuticos , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico por imagem , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia
12.
Cell Death Dis ; 12(12): 1162, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911941

RESUMO

Resistance against radio(chemo)therapy-induced cell death is a major determinant of oncological treatment failure and remains a perpetual clinical challenge. The underlying mechanisms are manifold and demand for comprehensive, cancer entity- and subtype-specific examination. In the present study, resistance against radiotherapy was systematically assessed in a panel of human head-and-neck squamous cell carcinoma (HNSCC) cell lines and xenotransplants derived thereof with the overarching aim to extract master regulators and potential candidates for mechanism-based pharmacological targeting. Clonogenic survival data were integrated with molecular and functional data on DNA damage repair and different cell fate decisions. A positive correlation between radioresistance and early induction of HNSCC cell senescence accompanied by NF-κB-dependent production of distinct senescence-associated cytokines, particularly ligands of the CXCR2 chemokine receptor, was identified. Time-lapse microscopy and medium transfer experiments disclosed the non-cell autonomous, paracrine nature of these mechanisms, and pharmacological interference with senescence-associated cytokine production by the NF-κB inhibitor metformin significantly improved radiotherapeutic performance in vitro and in vivo. With regard to clinical relevance, retrospective analyses of TCGA HNSCC data and an in-house HNSCC cohort revealed that elevated expression of CXCR2 and/or its ligands are associated with impaired treatment outcome. Collectively, our study identifies radiation-induced tumor cell senescence and the NF-κB-dependent production of distinct senescence-associated cytokines as critical drivers of radioresistance in HNSCC whose therapeutic targeting in the context of multi-modality treatment approaches should be further examined and may be of particular interest for the subgroup of patients with elevated expression of the CXCR2/ligand axis.


Assuntos
Senescência Celular , Neoplasias de Cabeça e Pescoço , Tolerância a Radiação , Receptores de Interleucina-8B , Carcinoma de Células Escamosas de Cabeça e Pescoço , Linhagem Celular Tumoral , Citocinas , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Ligantes , NF-kappa B , Receptores de Interleucina-8B/metabolismo , Estudos Retrospectivos , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia
14.
Cancers (Basel) ; 13(15)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34359812

RESUMO

BACKGROUND: Radiation-associated angiosarcoma of the breast (RAASB) is a rare, challenging disease, with surgery being the accepted basic therapeutic approach. In contrast, the role of adjuvant and systemic therapies is a subject of some controversy. Local recurrence rates reported in the literature are mostly heterogeneous and are highly dependent on the extent of surgery. In cases of locally recurrent or unresectable RAASB, prognosis is very poor. METHODS: We retrospectively report on 10 consecutive RAASB patients, most of them presenting with locally recurrent or unresectable RAASB, which were treated with thermography-controlled water-filtered infrared-A (wIRA) superficial hyperthermia (HT) immediately followed by re-irradiation (re-RT). Patients with RAASB were graded based on their tumor extent before onset of radiotherapy (RT). RESULTS: We recorded a local control (LC) rate dependent on tumor extent ranging from a high LC rate of 100% (two of two patients) in the adjuvant setting with an R0 or R2 resection to a limited LC rate of 33% (one of three patients) in patients with inoperable, macroscopic tumor lesions. CONCLUSION: Combined HT and re-RT should be considered as an option (a) for adjuvant treatment of RAASB, especially in cases with positive resection margins and after surgery of local recurrence (LR), and (b) for definitive treatment of unresectable RAASB.

17.
Cancers (Basel) ; 12(3)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155740

RESUMO

Effective tumor control in patients suffering from unresectable locally recurrent breast cancer (LRBC) in pre-irradiated areas can be achieved by re-irradiation combined with superficial hyperthermia. Using this combined modality, total re-irradiation dose and toxicity can be significantly reduced compared to conventionally fractionated treatment schedules with total doses of 60-66 Gy. Applying contact-free, thermography-controlled water-filtered infrared-A superficial hyperthermia, immediately followed by hypofractionated re-irradiation, consisting of 4 Gy once per week up to a total dose of 20 Gy, resulted in high overall response rates even in large-sized tumors. Comparability of clinical data between different combined Hyperthermia (HT)/Radiotherapy (RT) treatment schedules is impeded by the highly individual characteristics of this disease. Tumor size, ranging from microscopic disease and small lesions to large-sized cancer en cuirasse, is described as one of the most important prognostic factors. However, in clinical studies and analyses of LRBC, tumor size has so far been reported in a very heterogeneous way. Therefore, we suggest a novel, simple and feasible size classification (rClasses 0-IV). Applying this classification for the evaluation of 201 patients with pre-irradiated LRBC allowed for a stratification into distinct prognostic groups.

18.
J Pathol ; 248(4): 421-437, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30982971

RESUMO

Tspan8 exhibits a functional role in many cancer types including pancreatic, colorectal, oesophagus carcinoma, and melanoma. We present a first study on the expression and function of Tspan8 in breast cancer. Tspan8 protein was present in the majority of human primary breast cancer lesions and metastases in the brain, bone, lung, and liver. In a syngeneic rat breast cancer model, Tspan8+ tumours formed multiple liver and spleen metastases, while Tspan8- tumours exhibited a significantly diminished ability to metastasise, indicating a role of Tspan8 in metastases. Addressing the underlying molecular mechanisms, we discovered that Tspan8 can mediate up-regulation of E-cadherin and down-regulation of Twist, p120-catenin, and ß-catenin target genes accompanied by the change of cell phenotype, resembling the mesenchymal-epithelial transition. Furthermore, Tspan8+ cells exhibited enhanced cell-cell adhesion, diminished motility, and decreased sensitivity to irradiation. As a regulator of the content and function of extracellular vesicles (EVs), Tspan8 mediated a several-fold increase in EV number in cell culture and the circulation of tumour-bearing animals. We observed increased protein levels of E-cadherin and p120-catenin in these EVs; furthermore, Tspan8 and p120-catenin were co-immunoprecipitated, indicating that they may interact with each other. Altogether, our findings show the presence of Tspan8 in breast cancer primary lesion and metastases and indicate its role as a regulator of cell behaviour and EV release in breast cancer. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias da Mama/metabolismo , Caderinas/metabolismo , Carcinoma Ductal de Mama/metabolismo , Carcinoma Intraductal não Infiltrante/metabolismo , Carcinoma Lobular/metabolismo , Tetraspaninas/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Carcinoma Intraductal não Infiltrante/patologia , Carcinoma Lobular/patologia , Linhagem Celular Tumoral , Vesículas Extracelulares , Feminino , Humanos , Metástase Neoplásica , Ratos , Transdução de Sinais
19.
Adv Sci (Weinh) ; 6(4): 1800948, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30828519

RESUMO

The success of malignant tumors is conditioned by the intercellular communication between tumor cells and their microenvironment, with extracellular vesicles (EVs) acting as main mediators. While the value of 3D conditions to study tumor cells is well established, the impact of cellular architecture on EV content and function is not investigated yet. Here, a recently developed 3D cell culture microwell array is adapted for EV production and a comprehensive comparative analysis of biochemical features, RNA and proteomic profiles of EVs secreted by 2D vs 3D cultures of gastric cancer cells, is performed. 3D cultures are significantly more efficient in producing EVs than 2D cultures. Global upregulation of microRNAs and downregulation of proteins in 3D are observed, indicating their dynamic coregulation in response to cellular architecture, with the ADP-ribosylation factor 6 signaling pathway significantly downregulated in 3D EVs. The data strengthen the biological relevance of cellular architecture for production and cargo of EVs.

20.
Lab Chip ; 18(1): 179-189, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29211089

RESUMO

Multicellular spheroids represent a well-established 3D model to study healthy and diseased cells in vitro. The use of conventional 3D cell culture platforms for the generation of multicellular spheroids is limited to cell types that easily self-assemble into spheroids because less adhesive cells fail to form stable aggregates. A high-precision micromoulding technique developed in our laboratory produces deep conical agarose microwell arrays that allow the cultivation of uniform multicellular aggregates, irrespective of the spheroid formation capacity of the cells. Such hydrogel arrays warrant a steady nutrient supply for several weeks, permit live volumetric measurements to monitor cell growth, enable immunohistochemical staining, fluorescence-based microscopy, and facilitate immediate harvesting of cell aggregates. This system also allows co-cultures of two distinct cell types either in direct cell-cell contact or at a distance as the hydrogel permits diffusion of soluble compounds. Notably, we show that co-culture of a breast cancer cell line with bone marrow stromal cells enhances 3D growth of the cancer cells in this system.


Assuntos
Técnicas de Cultura de Células/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Sefarose/química , Esferoides Celulares/citologia , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Cocultura/instrumentação , Desenho de Equipamento , Humanos , Hidrogéis/química , Células-Tronco Mesenquimais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...