Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Med Virol ; 96(7): e29752, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38949191

RESUMO

Antiviral signaling, immune response and cell metabolism are dysregulated by SARS-CoV-2, the causative agent of COVID-19. Here, we show that SARS-CoV-2 accessory proteins ORF3a, ORF9b, ORF9c and ORF10 induce a significant mitochondrial and metabolic reprogramming in A549 lung epithelial cells. While ORF9b, ORF9c and ORF10 induced largely overlapping transcriptomes, ORF3a induced a distinct transcriptome, including the downregulation of numerous genes with critical roles in mitochondrial function and morphology. On the other hand, all four ORFs altered mitochondrial dynamics and function, but only ORF3a and ORF9c induced a marked alteration in mitochondrial cristae structure. Genome-Scale Metabolic Models identified both metabolic flux reprogramming features both shared across all accessory proteins and specific for each accessory protein. Notably, a downregulated amino acid metabolism was observed in ORF9b, ORF9c and ORF10, while an upregulated lipid metabolism was distinctly induced by ORF3a. These findings reveal metabolic dependencies and vulnerabilities prompted by SARS-CoV-2 accessory proteins that may be exploited to identify new targets for intervention.


Assuntos
COVID-19 , Mitocôndrias , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Mitocôndrias/metabolismo , COVID-19/metabolismo , COVID-19/virologia , COVID-19/patologia , Células A549 , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Transcriptoma , Fases de Leitura Aberta , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Viroporinas
2.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38892306

RESUMO

The development of specific antiviral therapies targeting SARS-CoV-2 remains fundamental because of the continued high incidence of COVID-19 and limited accessibility to antivirals in some countries. In this context, dark chemical matter (DCM), a set of drug-like compounds with outstanding selectivity profiles that have never shown bioactivity despite being extensively assayed, appears to be an excellent starting point for drug development. Accordingly, in this study, we performed a high-throughput screening to identify inhibitors of the SARS-CoV-2 main protease (Mpro) using DCM compounds as ligands. Multiple receptors and two different docking scoring functions were employed to identify the best molecular docking poses. The selected structures were subjected to extensive conventional and Gaussian accelerated molecular dynamics. From the results, four compounds with the best molecular behavior and binding energy were selected for experimental testing, one of which presented inhibitory activity with a Ki value of 48 ± 5 µM. Through virtual screening, we identified a significant starting point for drug development, shedding new light on DCM compounds.


Assuntos
Antivirais , Proteases 3C de Coronavírus , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases , SARS-CoV-2 , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Antivirais/farmacologia , Antivirais/química , Humanos , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , COVID-19/virologia , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Ligação Proteica , Ligantes
3.
Sci Total Environ ; 940: 173579, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-38823713

RESUMO

Human land use changes are threatening the integrity and health of coastal ecosystems worldwide. Intensified land use for anthropogenic purposes increases sedimentation rates, pollutants, and nutrient concentrations into adjacent coastal areas, often with detrimental effects on marine life and ecosystem functioning. However, how these factors interact to influence ecosystem health in mangrove forests is poorly understood. This study investigates the effects of catchment human land use on mangrove forest architecture and sedimentary attributes at a landscape-scale. Thirty sites were selected along a gradient of human land use within a narrow latitudinal range, to minimise the effects of varying climatic conditions. Land use was quantified using spatial analysis tools with existing land use databases (LCDB5). Twenty-six forest architectural and sedimentary variables were collected from each site. The results revealed a significant effect of human land use on ten out of 26 environmental variables. Eutrophication, characterised by changes in redox potential, pH, and sediment nutrient concentrations, was strongly associated with increasing human land use. The δ15N values of sediments and leaves also indicated increased anthropogenic nitrogen input. Furthermore, the study identified a positive correlation between human land use and tree density, indicating that increased nutrient delivery from catchments contributes to enhanced mangrove growth. Propagule and seedling densities were also positively correlated with human land use, suggesting potential recruitment success mechanisms. This research underpins the complex interactions between human land use and mangrove ecosystems, revealing changes in carbon dynamics, potential alterations in ecosystem services, and a need for holistic management approaches that consider the interconnectedness of species and their environment. These findings provide essential insights for regional ecosystem models, coastal management, and restoration strategies to address the impacts of human pressures on temperate mangrove forests, even in estuaries that may be relatively healthy.


Assuntos
Monitoramento Ambiental , Áreas Alagadas , Florestas , Conservação dos Recursos Naturais , Eutrofização
4.
Elife ; 122023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38014932

RESUMO

Compelling evidence has accumulated on the role of oxidative stress on the endothelial cell (EC) dysfunction in acute coronary syndrome. Unveiling the underlying metabolic determinants has been hampered by the scarcity of appropriate cell models to address cell-autonomous mechanisms of EC dysfunction. We have generated endothelial cells derived from thrombectomy specimens from patients affected with acute myocardial infarction (AMI) and conducted phenotypical and metabolic characterizations. AMI-derived endothelial cells (AMIECs) display impaired growth, migration, and tubulogenesis. Metabolically, AMIECs displayed augmented ROS and glutathione intracellular content, with a diminished glucose consumption coupled to high lactate production. In AMIECs, while PFKFB3 protein levels of were downregulated, PFKFB4 levels were upregulated, suggesting a shunting of glycolysis towards the pentose phosphate pathway, supported by upregulation of G6PD. Furthermore, the glutaminolytic enzyme GLS was upregulated in AMIECs, providing an explanation for the increase in glutathione content. Finally, AMIECs displayed a significantly higher mitochondrial membrane potential than control ECs, which, together with high ROS levels, suggests a coupled mitochondrial activity. We suggest that high mitochondrial proton coupling underlies the high production of ROS, balanced by PPP- and glutaminolysis-driven synthesis of glutathione, as a primary, cell-autonomous abnormality driving EC dysfunction in AMI.


Assuntos
Células Endoteliais , Infarto do Miocárdio , Humanos , Espécies Reativas de Oxigênio/metabolismo , Células Endoteliais/metabolismo , Reprogramação Metabólica , Estresse Oxidativo , Glicólise , Glutationa/metabolismo , Fosfofrutoquinase-2/metabolismo
6.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37111342

RESUMO

Over 750 million cases of COVID-19, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), have been reported since the onset of the global outbreak. The need for effective treatments has spurred intensive research for therapeutic agents based on pharmaceutical repositioning or natural products. In light of prior studies asserting the bioactivity of natural compounds of the autochthonous Peruvian flora, the present study focuses on the identification SARS-CoV-2 Mpro main protease dimer inhibitors. To this end, a target-based virtual screening was performed over a representative set of Peruvian flora-derived natural compounds. The best poses obtained from the ensemble molecular docking process were selected. These structures were subjected to extensive molecular dynamics steps for the computation of binding free energies along the trajectory and evaluation of the stability of the complexes. The compounds exhibiting the best free energy behaviors were selected for in vitro testing, confirming the inhibitory activity of Hyperoside against Mpro, with a Ki value lower than 20 µM, presumably through allosteric modulation.

7.
Cancer Immunol Immunother ; 72(4): 827-840, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36083313

RESUMO

BACKGROUND: Immune check-point blockade (ICB) has shown clinical benefit in mismatch repair-deficient/microsatellite instability high metastatic colorectal cancer (mCRC) but not in mismatch repair-proficient/microsatellite stable patients. Cancer vaccines with autologous dendritic cells (ADC) could be a complementary therapeutic approach to ICB as this combination has the potential to achieve synergistic effects. METHODS: This was a Phase I/II multicentric study with translational sub-studies, to evaluate the safety, pharmacodynamics and anti-tumor effects of Avelumab plus ADC vaccine in heavily pre-treated MSS mCRC patients. Primary objective was to determine the maximum tolerated dose and the efficacy of the combination. The primary end-point was 40% progression-free survival at 6 months with a 2 Simon Stage. RESULTS: A total of 28 patients were screened and 19 pts were included. Combined therapy was safe and well tolerated. An interim analysis (Simon design first-stage) recommended early termination because only 2/19 (11%) patients were disease free at 6 months. Median PFS was 3.1 months [2.1-5.3 months] and overall survival was 12.2 months [3.2-23.2 months]. Stimulation of immune system was observed in vitro but not clinically. The evaluation of basal RNA-seq noted significant changes between pre and post-therapy liver biopsies related to lipid metabolism and transport, inflammation and oxidative stress pathways. CONCLUSIONS: The combination of Avelumab plus ADC vaccine is safe and well tolerated but exhibited modest clinical activity. Our study describes, for the first-time, a de novo post-therapy metabolic rewiring, that could represent novel immunotherapy-induced tumor vulnerabilities.


Assuntos
Vacinas Anticâncer , Neoplasias do Colo , Neoplasias Colorretais , Neoplasias Retais , Humanos , Vacinas Anticâncer/uso terapêutico , Reparo de Erro de Pareamento de DNA , Neoplasias do Colo/tratamento farmacológico , Neoplasias Retais/tratamento farmacológico , Células Dendríticas , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
8.
Mar Pollut Bull ; 185(Pt B): 114352, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36395713

RESUMO

Anthropogenic stressors increasingly cause ecosystem-level changes to sensitive marine habitats such as coral reefs. Intensification of coastal development and shipping traffic can increase nutrient and oil pollution on coral reefs, yet these two stressors have not been studied in conjunction. Here, we simulate a disturbance scenario exposing carbonate settlement tiles to nutrient and oil pollution in a full-factorial design with four treatments: control, nutrients, oil, and combination to examine community structure and net primary productivity (NPP) of pioneer communities throughout 28 weeks. Compared to the control treatment oil pollution decreased overall settlement and NPP, while nutrients increased turf algae and NPP. However, the combination of these two stressors resulted in similar community composition and NPP as the control. These results indicate that pioneer communities may experience shifts due to nutrient enrichment, and/or oil pollution. However, the timing and duration of an event will influence recovery trajectories requiring further study.


Assuntos
Poluição por Petróleo , Petróleo , Recifes de Corais , Ecossistema , Nutrientes
9.
Front Immunol ; 13: 926304, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119118

RESUMO

Existing immune signatures and tumor mutational burden have only modest predictive capacity for the efficacy of immune check point inhibitors. In this study, we developed an immune-metabolic signature suitable for personalized ICI therapies. A classifier using an immune-metabolic signature (IMMETCOLS) was developed on a training set of 77 metastatic colorectal cancer (mCRC) samples and validated on 4,200 tumors from the TCGA database belonging to 11 types. Here, we reveal that the IMMETCOLS signature classifies tumors into three distinct immune-metabolic clusters. Cluster 1 displays markers of enhanced glycolisis, hexosamine byosinthesis and epithelial-to-mesenchymal transition. On multivariate analysis, cluster 1 tumors were enriched in pro-immune signature but not in immunophenoscore and were associated with the poorest median survival. Its predicted tumor metabolic features suggest an acidic-lactate-rich tumor microenvironment (TME) geared to an immunosuppressive setting, enriched in fibroblasts. Cluster 2 displays features of gluconeogenesis ability, which is needed for glucose-independent survival and preferential use of alternative carbon sources, including glutamine and lipid uptake/ß-oxidation. Its metabolic features suggest a hypoxic and hypoglycemic TME, associated with poor tumor-associated antigen presentation. Finally, cluster 3 is highly glycolytic but also has a solid mitochondrial function, with concomitant upregulation of glutamine and essential amino acid transporters and the pentose phosphate pathway leading to glucose exhaustion in the TME and immunosuppression. Together, these findings suggest that the IMMETCOLS signature provides a classifier of tumors from diverse origins, yielding three clusters with distinct immune-metabolic profiles, representing a new predictive tool for patient selection for specific immune-metabolic therapeutic approaches.


Assuntos
Glutamina , Neoplasias , Carbono , Glucose , Hexosaminas , Humanos , Hipoglicemiantes , Lactatos , Lipídeos , Microambiente Tumoral/genética
10.
BMC Med ; 20(1): 129, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351135

RESUMO

BACKGROUND: SARS-CoV-2 infection portends a broad range of outcomes, from a majority of asymptomatic cases to a lethal disease. Robust correlates of severe COVID-19 include old age, male sex, poverty, and co-morbidities such as obesity, diabetes, and cardiovascular disease. A precise knowledge of the molecular and biological mechanisms that may explain the association of severe disease with male sex is still lacking. Here, we analyzed the relationship of serum testosterone levels and the immune cell skewing with disease severity in male COVID-19 patients. METHODS: Biochemical and hematological parameters of admission samples in 497 hospitalized male and female COVID-19 patients, analyzed for associations with outcome and sex. Longitudinal (in-hospital course) analyses of a subcohort of 114 male patients were analyzed for associations with outcome. Longitudinal analyses of immune populations by flow cytometry in 24 male patients were studied for associations with outcome. RESULTS: We have found quantitative differences in biochemical predictors of disease outcome in male vs. female patients. Longitudinal analyses in a subcohort of male COVID-19 patients identified serum testosterone trajectories as the strongest predictor of survival (AUC of ROC = 92.8%, p < 0.0001) in these patients among all biochemical parameters studied, including single-point admission serum testosterone values. In lethal cases, longitudinal determinations of serum luteinizing hormone (LH) and androstenedione levels did not follow physiological feedback patterns. Failure to reinstate physiological testosterone levels was associated with evidence of impaired T helper differentiation and augmented circulating classical monocytes. CONCLUSIONS: Recovery or failure to reinstate testosterone levels is strongly associated with survival or death, respectively, from COVID-19 in male patients. Our data suggest an early inhibition of the central LH-androgen biosynthesis axis in a majority of patients, followed by full recovery in survivors or a peripheral failure in lethal cases. These observations are suggestive of a significant role of testosterone status in the immune responses to COVID-19 and warrant future experimental explorations of mechanistic relationships between testosterone status and SARS-CoV-2 infection outcomes, with potential prophylactic or therapeutic implications.


Assuntos
COVID-19 , Androgênios , Feminino , Humanos , Hormônio Luteinizante/metabolismo , Masculino , SARS-CoV-2 , Testosterona
11.
J Chem Inf Model ; 61(12): 6094-6106, 2021 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-34806382

RESUMO

SARS-CoV-2 is a type of coronavirus responsible for the international outbreak of respiratory illness termed COVID-19 that forced the World Health Organization to declare a pandemic infectious disease situation of international concern at the beginning of 2020. The need for a swift response against COVID-19 prompted to consider different sources to identify bioactive compounds that can be used as therapeutic agents, including available drugs and natural products. Accordingly, this work reports the results of a virtual screening process aimed at identifying antiviral natural product inhibitors of the SARS-CoV-2 Mpro viral protease. For this purpose, ca. 2000 compounds of the Selleck database of Natural Compounds were the subject of an ensemble docking process targeting the Mpro protease. Molecules that showed binding to most of the protein conformations were retained for a further step that involved the computation of the binding free energy of the ligand-Mpro complex along a molecular dynamics trajectory. The compounds that showed a smooth binding free energy behavior were selected for in vitro testing. From the resulting set of compounds, five compounds exhibited an antiviral profile, and they are disclosed in the present work.


Assuntos
Produtos Biológicos , COVID-19 , Antivirais/farmacologia , Produtos Biológicos/farmacologia , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeo Hidrolases , Inibidores de Proteases/farmacologia , SARS-CoV-2
12.
High Alt Med Biol ; 22(2): 209-224, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33780636

RESUMO

Thomson, Timothy M., Fresia Casas, Harold Andre Guerrero, Rómulo Figueroa-Mujíca, Francisco C. Villafuerte, and Claudia Machicado. Potential protective effect from COVID-19 conferred by altitude: A longitudinal analysis in Peru during full lockdown. High Alt Med Biol. 22: 209-224, 2021. Background: The COVID-19 pandemic had a delayed onset in America. Despite the time advantage for the implementation of preventative measures to contain its spread, the pandemic followed growth rates that paralleled those observed before in Europe. Objectives: To analyze the temporal and geographical distribution of the COVID-19 pandemic at district-level in Perú during the full lockdown period in 2020. Methods: Analysis of publicly available data sets, stratified by altitude and geographical localization. Correlation tests of COVID-19 case and death rates to population prevalence of comorbidities. Results: We observe a strong protective effect of altitude from COVID-19 mortality in populations located above 2,500 m. We provide evidence that internal migration through a specific land route is a significant factor progressively overriding the protection from COVID-19 afforded by high altitude. This protection is independent of poverty indexes and is inversely correlated with the prevalence of hypertension and hypercholesterolemia. Discussion: Long-term adaptation to residency at high altitude may be the third general protective factor from COVID-19 severity and death, after young age and female sex. Multisystemic adaptive traits or acclimatization processes in response to chronic hypobaric hypoxia may explain the apparent protective effect of high altitude from COVID-19 death.


Assuntos
Doença da Altitude , COVID-19 , Altitude , Controle de Doenças Transmissíveis , Feminino , Humanos , Pandemias , Peru/epidemiologia , SARS-CoV-2
13.
Br J Haematol ; 190(4): 520-524, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32531085

RESUMO

Coronavirus disease 2019 (COVID-19) is frequently associated with severe systemic consequences, including vasculitis, a hyperinflammatory state and hypercoagulation. The mechanisms leading to these life-threatening abnormalities are multifactorial. Based on the analysis of publicly available interactomes, we propose that severe acute respiratory syndrome coronavirus-2 infection directly causes a deficiency in C1 esterase inhibitor, a pathogen-specific mechanism that may help explain significant systemic abnormalities in patients with COVID-19.


Assuntos
COVID-19/metabolismo , Proteína Inibidora do Complemento C1/metabolismo , SARS-CoV-2/metabolismo , COVID-19/patologia , Humanos
14.
Cancers (Basel) ; 11(8)2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31416205

RESUMO

The current standard-of-care for metastatic colorectal cancer (mCRC) includes chemotherapy and anti-angiogenic or anti-epidermal growth factor receptor (EGFR) monoclonal antibodies, even though the addition of anti-angiogenic agents to backbone chemotherapy provides little benefit for overall survival. Since the approval of anti-angiogenic monoclonal antibodies bevacizumab and aflibercept, for the management of mCRC over a decade ago, extensive efforts have been devoted to discovering predictive factors of the anti-angiogenic response, unsuccessfully. Recent evidence has suggested a potential correlation between angiogenesis and immune phenotypes associated with colorectal cancer. Here, we review evidence of interactions between tumor angiogenesis, the immune microenvironment, and metabolic reprogramming. More specifically, we will highlight such interactions as inferred from our novel immune-metabolic (IM) signature, which groups mCRC into three distinct clusters, namely inflamed-stromal-dependent (IM Cluster 1), inflamed-non stromal-dependent (IM Cluster 2), and non-inflamed or cold (IM Cluster 3), and discuss the merits of the IM classification as a guide to new immune-metabolic combinatorial therapeutic strategies in mCRC.

15.
J Clin Med ; 8(7)2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31277295

RESUMO

A major transcriptional and phenotypic reprogramming event during development is the establishment of the mesodermal layer from the ectoderm through epithelial-mesenchymal transition (EMT). EMT is employed in subsequent developmental events, and also in many physiological and pathological processes, such as the dissemination of cancer cells through metastasis, as a reversible transition between epithelial and mesenchymal states. The remarkable phenotypic remodeling accompanying these transitions is driven by characteristic transcription factors whose activities and/or activation depend upon signaling cues and co-factors, including intermediary metabolites. In this review, we summarize salient metabolic features that enable or instigate these transitions, as well as adaptations undergone by cells to meet the metabolic requirements of their new states, with an emphasis on the roles played by the metabolic regulation of epigenetic modifications, notably methylation and acetylation.

16.
PLoS One ; 13(2): e0192175, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29466368

RESUMO

Tumour angiogenesis is an important hallmark of cancer and the study of its metabolic adaptations, downstream to any cellular change, can reveal attractive targets for inhibiting cancer growth. In the tumour microenvironment, endothelial cells (ECs) interact with heterogeneous tumour cell types that drive angiogenesis and metastasis. In this study we aim to characterize the metabolic alterations in ECs influenced by the presence of tumour cells with extreme metastatic abilities. Human umbilical vein endothelial cells (HUVECs) were subjected to different microenvironmental conditions, such as the presence of highly metastatic PC-3M and highly invasive PC-3S prostate cancer cell lines, in addition to the angiogenic activator vascular endothelial growth factor (VEGF), under normoxia. Untargeted high resolution liquid chromatography-mass spectrometry (LC-MS) based metabolomics revealed significant metabolite differences among the various conditions and a total of 25 significantly altered metabolites were identified including acetyl L-carnitine, NAD+, hypoxanthine, guanine and oleamide, with profile changes unique to each of the experimental conditions. Biochemical pathway analysis revealed the importance of fatty acid oxidation and nucleotide salvage pathways. These results provide a global metabolic preview that could help in selectively targeting the ECs aiding in either cancer cell invasion or metastasis in the heterogeneous tumour microenvironment.


Assuntos
Metabolômica , Células-Tronco Neoplásicas/metabolismo , Neoplasias da Próstata/metabolismo , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão/métodos , Técnicas de Cocultura , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Espectrometria de Massas/métodos , Neoplasias da Próstata/patologia
17.
PLoS Comput Biol ; 14(1): e1005914, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29293497

RESUMO

Epithelial-mesenchymal-transition promotes intra-tumoral heterogeneity, by enhancing tumor cell invasiveness and promoting drug resistance. We integrated transcriptomic data for two clonal subpopulations from a prostate cancer cell line (PC-3) into a genome-scale metabolic network model to explore their metabolic differences and potential vulnerabilities. In this dual cell model, PC-3/S cells express Epithelial-mesenchymal-transition markers and display high invasiveness and low metastatic potential, while PC-3/M cells present the opposite phenotype and higher proliferative rate. Model-driven analysis and experimental validations unveiled a marked metabolic reprogramming in long-chain fatty acids metabolism. While PC-3/M cells showed an enhanced entry of long-chain fatty acids into the mitochondria, PC-3/S cells used long-chain fatty acids as precursors of eicosanoid metabolism. We suggest that this metabolic reprogramming endows PC-3/M cells with augmented energy metabolism for fast proliferation and PC-3/S cells with increased eicosanoid production impacting angiogenesis, cell adhesion and invasion. PC-3/S metabolism also promotes the accumulation of docosahexaenoic acid, a long-chain fatty acid with antiproliferative effects. The potential therapeutic significance of our model was supported by a differential sensitivity of PC-3/M cells to etomoxir, an inhibitor of long-chain fatty acid transport to the mitochondria.


Assuntos
Ácidos Graxos/metabolismo , Neoplasias da Próstata/metabolismo , Ácido Araquidônico/metabolismo , Transporte Biológico Ativo/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Biologia Computacional , Ácidos Docosa-Hexaenoicos/metabolismo , Eicosanoides/metabolismo , Transição Epitelial-Mesenquimal , Compostos de Epóxi/farmacologia , Ácidos Graxos/química , Humanos , Masculino , Redes e Vias Metabólicas , Mitocôndrias/metabolismo , Modelos Biológicos , Invasividade Neoplásica , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Transcriptoma
19.
Front Mol Biosci ; 5: 120, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30723719

RESUMO

Cardiovascular diseases (CVD) are the leading cause of death worldwide. CVD comprise a range of diseases affecting the functionality of the heart and blood vessels, including acute myocardial infarction (AMI) and pulmonary hypertension (PH). Despite their different causative mechanisms, both AMI and PH involve narrowed or blocked blood vessels, hypoxia, and tissue infarction. The endothelium plays a pivotal role in the development of CVD. Disruption of the normal homeostasis of endothelia, alterations in the blood vessel structure, and abnormal functionality are essential factors in the onset and progression of both AMI and PH. An emerging theory proposes that pathological blood vessel responses and endothelial dysfunction develop as a result of an abnormal endothelial metabolism. It has been suggested that, in CVD, endothelial cell metabolism switches to higher glycolysis, rather than oxidative phosphorylation, as the main source of ATP, a process designated as the Warburg effect. The evidence of these alterations suggests that understanding endothelial metabolism and mitochondrial function may be central to unveiling fundamental mechanisms underlying cardiovascular pathogenesis and to identifying novel critical metabolic biomarkers and therapeutic targets. Here, we review the role of the endothelium in the regulation of vascular homeostasis and we detail key aspects of endothelial cell metabolism. We also describe recent findings concerning metabolic endothelial cell alterations in acute myocardial infarction and pulmonary hypertension, their relationship with disease pathogenesis and we discuss the future potential of pharmacological modulation of cellular metabolism in the treatment of cardiopulmonary vascular dysfunction. Although targeting endothelial cell metabolism is still in its infancy, it is a promising strategy to restore normal endothelial functions and thus forestall or revert the development of CVD in personalized multi-hit interventions at the metabolic level.

20.
Oncotarget ; 8(48): 83384-83406, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-29137351

RESUMO

MicroRNAs are critical regulators of gene networks in normal and abnormal biological processes. Focusing on invasive ductal breast cancer (IDC), we have found dysregulated expression in tumor samples of several microRNAs, including the miR-200 family, along progression from primary tumors to distant metastases, further reflected in higher blood levels of miR-200b and miR-7 in IDC patients with regional or distant metastases relative to patients with primary node-negative tumors. Forced expression of miR-200s in MCF10CA1h mammary cells induced an enhanced epithelial program, aldehyde dehydrogenase (ALDH) activity, mammosphere growth and ability to form branched tubuloalveolar structures while promoting orthotopic tumor growth and lung colonization in vivo. MiR-200s also induced the constitutive activation of the PI3K-Akt signaling through downregulation of PTEN, and the enhanced mammosphere growth and ALDH activity induced in MCF10CA1h cells by miR-200s required the activation of this signaling pathway. Interestingly, the morphology of tumors formed in vivo by cells expressing miR-200s was reminiscent of metaplastic breast cancer (MBC). Indeed, the epithelial components of MBC samples expressed significantly higher levels of miR-200s than their mesenchymal components and displayed a marker profile compatible with luminal progenitor cells. We propose that microRNAs of the miR-200 family promote traits of highly proliferative breast luminal progenitor cells, thereby exacerbating the growth and metastatic properties of transformed mammary epithelial cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA