Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Infect Dis ; 229(2): 567-575, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-37943633

RESUMO

BACKGROUND: Human immunity triggered by natural malaria infections impedes parasite transmission from humans to mosquitoes, leading to interest in transmission-blocking vaccines. However, immunity characteristics, especially strain specificity, remain largely unexplored. We investigated naturally acquired transmission-blocking immunity (TBI) against Plasmodium vivax, a major malaria parasite. METHODS: Using the direct membrane-feeding assay, we assessed TBI in plasma samples and examined the role of antibodies by removing immunoglobulins through protein G/L adsorption before mosquito feeding. Strain specificity was evaluated by conducting a direct membrane-feeding assay with plasma exchange. RESULTS: Blood samples from 47 patients with P vivax were evaluated, with 37 plasma samples successfully infecting mosquitoes. Among these, 26 showed inhibition before immunoglobulin depletion. Despite substantial immunoglobulin removal, 4 samples still exhibited notable inhibition, while 22 had reduced blocking activity. Testing against heterologous strains revealed some plasma samples with broad TBI and others with strain-specific TBI. CONCLUSIONS: Our findings indicate that naturally acquired TBI is mainly mediated by antibodies, with possible contributions from other serum factors. The transmission-blocking activity of plasma samples varied by the tested parasite strain, suggesting single polymorphic or multiple targets for naturally acquired TBI. These observations improve understanding of immunity against P vivax and hold implications for transmission-blocking vaccine development.


Assuntos
Anopheles , Malária Vivax , Malária , Animais , Humanos , Plasmodium vivax , Tailândia/epidemiologia , Malária Vivax/parasitologia , Imunidade Adaptativa , Anopheles/parasitologia , Anticorpos Antiprotozoários , Antígenos de Protozoários
2.
Vaccine ; 41(2): 555-563, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36503858

RESUMO

Antigens expressed during the sexual development of malaria parasites are transmission-blocking vaccine (TBV) targets. Pb22, a protein expressed and localized to the plasma membrane of gametes and ookinetes in Plasmodium berghei, is an excellent TBV candidate. Here, we evaluated the TB potential of the Plasmodium vivax ortholog Pv22 using a transgenic P. berghei parasite line and P. vivax clinical isolates. The full-length recombinant Pv22 (rPv22) protein was produced and used to immunize mice and rabbits to obtain antibodies. We generated a transgenic P. berghei line (TrPv22Pb) by inserting the pv22 gene into the pb22 locus and showed that Pv22 expression completely rescued the defects in male gametogenesis of the pb22 deletion parasite. Since Pv22 in the transgenic parasite showed similar expression and localization patterns to Pb22, we used the TrPv22Pb parasite as a surrogate to evaluate the TB potential of Pv22. In mosquito feeding assays, mosquitoes feeding on rPv22-immunized mice infected with TrPv22Pb parasites showed a 49.3-53.3 % reduction in the oocyst density compared to the control group. In vitro assays showed that the rPv22 immune sera significantly inhibited exflagellation and ookinete formation of the TrPv22Pb parasites. In a direct membrane feeding assay using three clinical P. vivax isolates, the rabbit anti-rPv22 antibodies also significantly decreased the oocyst density by 53.7, 30.2, and 26.2 %, respectively. This study demonstrated the feasibility of using transgenic P. berghei parasites expressing P. vivax antigens as a potential tool to evaluate TBV candidates. However, the much weaker TB activity of Pv22 obtained from two complementary assays suggest that Pv22 may not be a promising TBV candidate for P. vivax.


Assuntos
Culicidae , Vacinas Antimaláricas , Malária Vivax , Malária , Masculino , Animais , Camundongos , Coelhos , Malária/prevenção & controle , Plasmodium vivax/genética , Plasmodium berghei/genética , Vacinas Antimaláricas/genética , Proteínas de Protozoários , Malária Vivax/prevenção & controle , Proteínas Recombinantes , Anticorpos Antiprotozoários
3.
Vaccine ; 38(13): 2841-2848, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32093983

RESUMO

Transmission-blocking vaccine (TBV) is a promising strategy to interfere with the transmission of malaria. To date, only limited TBV candidate antigens have been identified for Plasmodium vivax. HAP2 is a gamete membrane fusion protein, with homology to the class II viral fusion proteins. Herein we reported the characterization of the PvHAP2 for its potential as a TBV candidate for P. vivax. The HAP2/GCS1 domain of PvHAP2 was expressed in the baculovirus expression system and the recombinant protein was used to raise antibodies in rabbits. Indirect immunofluorescence assays showed that anti-PvHAP2 antibodies reacted only with the male gametocytes on blood smears. Direct membrane feeding assays were conducted using four field P. vivax isolates in Anopheles dirus. At a mean infection intensity of 72.4, 70.7, 51.3, and 15.6 oocysts/midgut with the control antibodies, anti-PvHAP2 antibodies significantly reduced the midgut oocyst intensity by 40.3, 44.4, 61.9, and 89.7%. Whereas the anti-PvHAP2 antibodies were not effective in reducing the infection prevalence at higher parasite exposure (51.3-72.4 oocysts/midgut in the control group), the anti-PvHAP2 antibodies reduced infection prevalence by 50% at a low challenge (15.6 oocysts/midgut). Multiple sequence alignment showed 100% identity among these Thai P. vivax isolates, suggesting that polymorphism may not be an impediment for the utilization of PvHAP2 as a TBV antigen. In conclusion, our results suggest that PvHAP2 could serve as a TBV candidate for P. vivax, and further optimization and evaluation are warranted.


Assuntos
Antígenos de Protozoários/imunologia , Vacinas Antimaláricas , Malária Vivax , Animais , Anticorpos Antiprotozoários/imunologia , Malária Vivax/prevenção & controle , Masculino , Plasmodium vivax/imunologia , Coelhos , Tailândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...