Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein J ; 41(4-5): 515-526, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35933571

RESUMO

Moloney murine leukemia virus reverse transcriptase (MMLV-RT) is the most frequently used enzyme in molecular biology for cDNA synthesis. To date, reverse transcription coupled with Polymerase Chain Reaction, known as RT-PCR, has been popular as an excellent approach for the detection of SARS-CoV-2 during the COVID-19 pandemic. In this study, we aimed to improve the enzymatic production and performance of MMLV-RT by optimizing both codon and culture conditions in E. coli expression system. By applying the optimized codon and culture conditions, the enzyme was successfully overexpressed and increased at high level based on the result of SDS-PAGE and Western blotting. The total amount of MMLV-RT has improved 85-fold from 0.002 g L-1 to 0.175 g L-1 of culture. One-step purification by nickel affinity chromatography has been performed to generate the purified enzyme for further analysis of qualitative and quantitative RT activity. Overall, our investigation provides useful strategies to enhance the recombinant enzyme of MMLV-RT in both production and performance. More importantly, the enzyme has shown promising activity to be used for RT-PCR assay.


Assuntos
Vírus da Leucemia Murina de Moloney , Códon/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Vírus da Leucemia Murina de Moloney/enzimologia , Vírus da Leucemia Murina de Moloney/genética , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo
2.
Sci Rep ; 12(1): 13645, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953496

RESUMO

Acidic and chemical inhibitor stresses undermine efficient lactic acid bioproduction from lignocellulosic feedstock. Requisite coping treatments, such as detoxification and neutralizing agent supplementation, can be eliminated if a strong microbial host is employed in the process. Here, we exploited an originally robust yeast, Saccharomyces cerevisiae BTCC3, as a production platform for lactic acid. This wild-type strain exhibited a rapid cell growth in the presence of various chemical inhibitors compared to laboratory and industrial strains, namely BY4741 and Ethanol-red. Pathway engineering was performed on the strain by introducing an exogenous LDH gene after disrupting the PDC1 and PDC5 genes. Facilitated by this engineered strain, high cell density cultivation could generate lactic acid with productivity at 4.80 and 3.68 g L-1 h-1 under semi-neutralized and non-neutralized conditions, respectively. Those values were relatively higher compared to other studies. Cultivation using real lignocellulosic hydrolysate was conducted to assess the performance of this engineered strain. Non-neutralized fermentation using non-detoxified hydrolysate from sugarcane bagasse as a medium could produce lactic acid at 1.69 g L-1 h-1, which was competitive to the results from other reports that still included detoxification and neutralization steps in their experiments. This strategy could make the overall lactic acid bioproduction process simpler, greener, and more cost-efficient.


Assuntos
Saccharomyces cerevisiae , Saccharum , Celulose/metabolismo , Fermentação , Ácido Láctico/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharum/metabolismo
3.
J Biosci Bioeng ; 125(6): 695-702, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29373308

RESUMO

Oleaginous microbes can convert substrates such as carbon dioxide, sugars, and organic acids to single-cell oils (SCOs). Among the oleaginous microorganisms, Lipomyces starkeyi is a particularly well-suited host given its impressive native abilities, including the capability to utilize a wide variety of carbon sources. In this work, the potential of L. starkeyi NBRC10381 to produce SCOs in a synthetically nitrogen-limited mineral medium (-NMM) was investigated by differing the inoculum size using glucose and/or xylose as a carbon source. Fermentation using glucose and xylose as mixed carbon sources generated the highest production of biomass at 40.8 g/L, and achieved a lipid content of 84.9% (w/w). When either glucose or xylose was used separately, the totals for achieved lipid content were 79.6% (w/w) and 85.1% (w/w), respectively. However, biomass production was higher for glucose than for xylose (30.3 vs. 28.7 g/L, respectively). This study describes the first simultaneous achievement of higher levels of cell mass and lipid production using glucose and/or xylose as the carbon sources in different inoculum sizes.


Assuntos
Glucose/metabolismo , Lipomyces/citologia , Lipomyces/metabolismo , Óleos/metabolismo , Xilose/metabolismo , Biomassa , Contagem de Células , Fermentação , Lipídeos/biossíntese , Lipomyces/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...