Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 321: 115932, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35973290

RESUMO

Applications of nitrogen (N) fertiliser to agricultural lands impact many marine and aquatic ecosystems, and improved N fertiliser management is needed to reduce these water quality impacts. Government policies need information on water quality and risk associated with improved practices to evaluate the benefits of their adoption. Policies protecting Great Barrier Reef (GBR) ecosystems are an example of this situation. We developed a simple metric for assessing the risk of N discharge from sugarcane cropping, the biggest contributor of dissolved inorganic N to the GBR. The metric, termed NiLRI, is the ratio of N fertiliser applied to crops and the cane yield achieved (i.e. kg N (t cane)-1). We defined seven classes of water quality risk using NiLRI values derived from first principles reasoning. NiLRI values calculated from (1) results of historical field experiments and (2) survey data on the management of 170,177 ha (or 53%) of commercial sugarcane cropping were compared to the classes. The NiLRI values in both the experiments and commercial crops fell into all seven classes, showing that the classes were both biophysically sensible (c.f. the experiments) and relevant to farmers' experience. We then used machine learning to explore the association between crop management practices recorded in the surveys and associated NiLRI values. Practices that most influenced NiLRI values had little apparent direct impact on N management. They included improving fallow management and reducing tillage and compaction, practices that have been promoted for production rather than N discharge benefits. The study not only provides a metric for the change in N water quality risk resulting from adoption of improved practices, it also gives the first clear empirical evidence of the agronomic practices that could be promoted to reduce water quality risk while maintaining or improving yields of sugarcane crops grown in catchments adjacent to the GBR. Our approach has relevance to assessing the environmental risk of N fertiliser management in other countries and cropping systems.


Assuntos
Nitrogênio , Saccharum , Agricultura/métodos , Produtos Agrícolas , Ecossistema , Fertilizantes , Nitrogênio/análise , Qualidade da Água
2.
J Exp Bot ; 73(16): 5715-5729, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35728801

RESUMO

Crop multi-model ensembles (MME) have proven to be effective in increasing the accuracy of simulations in modelling experiments. However, the ability of MME to capture crop responses to changes in sowing dates and densities has not yet been investigated. These management interventions are some of the main levers for adapting cropping systems to climate change. Here, we explore the performance of a MME of 29 wheat crop models to predict the effect of changing sowing dates and rates on yield and yield components, on two sites located in a high-yielding environment in New Zealand. The experiment was conducted for 6 years and provided 50 combinations of sowing date, sowing density and growing season. We show that the MME simulates seasonal growth of wheat well under standard sowing conditions, but fails under early sowing and high sowing rates. The comparison between observed and simulated in-season fraction of intercepted photosynthetically active radiation (FIPAR) for early sown wheat shows that the MME does not capture the decrease of crop above ground biomass during winter months due to senescence. Models need to better account for tiller competition for light, nutrients, and water during vegetative growth, and early tiller senescence and tiller mortality, which are exacerbated by early sowing, high sowing densities, and warmer winter temperatures.


Assuntos
Mudança Climática , Triticum , Biomassa , Estações do Ano , Temperatura
3.
Mar Pollut Bull ; 169: 112534, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34225212

RESUMO

In recent decades, significant advances have been made in understanding the generation, fates and consequences of water quality pollutants in the Great Barrier Reef ecosystem. However, skepticism and lack of trust in water quality science by farming stakeholders has emerged as a significant challenge. The ongoing failures of both compulsory and particularly voluntary practices to improve land management and reduce diffuse agricultural pollution from the Great Barrier Reef catchment underlines the need for more effective communication of water quality issues at appropriate decision-making scales to landholders. Using recent Great Barrier Reef catchment experiences as examples, we highlight several emerging themes and opportunities in using technology to better communicate land use-water quality impacts and delivery of actionable knowledge to farmers, specifically supporting decision-making, behavior change, and the spatial identification of nutrient generation 'hotspots' in intensive agriculture catchments. We also make recommendations for co-designed monitoring-extension platforms involving farmers, governments, researchers, and related agencies, to cut across stakeholder skepticism, and achieve desired water quality and ecosystem outcomes.


Assuntos
Ecossistema , Qualidade da Água , Agricultura , Comunicação , Fazendas , Tecnologia
4.
Mar Pollut Bull ; 170: 112628, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34218029

RESUMO

To protect and improve water quality in the Great Barrier Reef, the Queensland Government's Reef 2050 Water Quality Improvement Plan targets that 90% of sugarcane, horticulture, cropping and grazing lands in priority areas be managed using best management practices for sediment, nutrient and pesticides by 2025. Progress towards this target is insufficient and variable across catchments and industries. The motivation to adopt improvements in management practices is heavily influenced by social, economic, cultural and institutional dimensions. In this paper we synthesise the literature on how these human dimensions influence decision making for land management practice and highlight where future investment could be focussed. We highlight that focussing on -1) investigating systems to support landholder decision making under climate uncertainty (risk); 2) generating a better understanding of the extent and drivers of landholder transaction cost; 3) understanding if there are competing 'right' ways to farm; and 4) improving understanding of the social processes, trust and power dynamics within GBR industries and what these means for practice change- could improve practice change uptake in the future.


Assuntos
Qualidade da Água , Água , Agricultura , Conservação dos Recursos Naturais , Humanos , Melhoria de Qualidade
5.
Sci Total Environ ; 772: 145031, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578140

RESUMO

BACKGROUND: Soil N mineralisation is the process by which organic N is converted into plant-available forms, while soil N immobilisation is the transformation of inorganic soil N into organic matter and microbial biomass, thereafter becoming bio-unavailable to plants. Mechanistic models can be used to explore the contribution of mineralised or immobilised N to pasture growth through simulation of plant, soil and environment interactions driven by management. PURPOSE: Our objectives were (1) to compare the performance of three agro-ecosystems models (APSIM, DayCent and DairyMod) in simulating soil N, pasture biomass and soil water using the same experimental data in three diverse environments (2), to determine if tactical application of N fertiliser in different seasons could be used to leverage seasonal trends in N mineralisation to influence pasture growth and (3), to explore the sensitivity of N mineralisation to changes in N fertilisation, cutting frequency and irrigation rate. KEY RESULTS: Despite considerable variation in model sophistication, no model consistently outperformed the other models with respect to simulation of soil N, shoot biomass or soil water. Differences in the accuracy of simulated soil NH4 and NO3 were greater between sites than between models and overall, all models simulated cumulative N2O well. While tactical N application had immediate effects on NO3, NH4, N mineralisation and pasture growth, no long-term relationship between mineralisation and pasture growth could be discerned. It was also shown that N mineralisation of DayCent was more sensitive to N fertiliser and cutting frequency compared with the other models. MAJOR CONCLUSIONS: Our results suggest that while superfluous N fertilisation generally stimulates immobilisation and a pulse of N2O emissions, subsequent effects through N mineralisation/immobilisation effects on pasture growth are variable. We suggest that further controlled environment soil incubation research may help separate successive and overlapping cycles of mineralisation and immobilisation that make it difficult to diagnose long-term implications for (and associations with) pasture growth.

6.
Sustain Sci ; 16(2): 677-690, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33425035

RESUMO

Nutrient runoff from catchments that drain into the Great Barrier Reef (GBR) is a significant source of stress for this World Heritage Area. An alliance of collaborative on-ground water quality monitoring (Project 25) and technologically driven digital application development (Digiscape GBR) projects were formulated to provide data that highlighted the contribution of a network of Australian sugar cane farmers, amongst other sources, to nutrient runoff. This environmental data and subsequent information were extended to the farming community through scientist-led feedback sessions and the development of specialised digital technology (1622™WQ) that help build an understanding of the nutrient movements, in this case nitrogen, such that farmers might think about and eventually act to alter their fertilizer application practices. This paper reflects on a socio-environmental sustainability challenge that emerged during this case study, by utilising the nascent concept of digi-grasping. We highlight the importance of the entire agricultural knowledge and advice network being part of an innovation journey to increase the utility of digital agricultural technologies developed to increase overall sustainability. We develop the digi-MAST analytical framework, which explores modes of being and doing in the digital world, ranging from 'the everyday mystery of the digital world (M)', through digital 'awareness (A)', digitally 'sparked' being/s (S), and finally the ability of individuals and/or groups to 'transform (T)' utilising digital technologies and human imaginations. Our digi-MAST framework allows us to compare agricultural actors, in this case, to understand present modes of digi-grasping to help determine the resources and actions likely to be required to achieve impact from the development of various forms of digital technological research outputs.

7.
Sci Rep ; 9(1): 5851, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30971710

RESUMO

Soils are an important source of nitrogen in many of the world's cropping systems. Especially in low-input production systems, nitrogen release from soil organic matter turn-over is the major part of the crop's nitrogen supply and research suggests that this process is significantly affected by changes in climate. The knowledge of the amount of nitrogen being accountable for crop nutrition is purely empirical in many production areas in the world and data as a foundation of global-scale climate change and food security assessments is scarce. Here we demonstrate that nitrogen mineralisation in general follows similar rules as for carbon, but with different implications for agricultural systems. We analysed 340 data sets from previously published incubation experiments for potential nitrogen mineralisation which covered a large range of soils and climate conditions. We find that under warm and all-year humid conditions the share of potentially mineralisable nitrogen in the soil's total nitrogen is significantly smaller than in dry or temperate environments. We conclude that - despite relatively high soil nitrogen stocks - soil-borne nitrogen supply for crop production is very low in tropical and humid subtropical environments, which is a critical piece of information for global assessments of agricultural production and food security.

8.
Glob Chang Biol ; 25(4): 1428-1444, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30536680

RESUMO

Efforts to limit global warming to below 2°C in relation to the pre-industrial level are under way, in accordance with the 2015 Paris Agreement. However, most impact research on agriculture to date has focused on impacts of warming >2°C on mean crop yields, and many previous studies did not focus sufficiently on extreme events and yield interannual variability. Here, with the latest climate scenarios from the Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI) project, we evaluated the impacts of the 2015 Paris Agreement range of global warming (1.5 and 2.0°C warming above the pre-industrial period) on global wheat production and local yield variability. A multi-crop and multi-climate model ensemble over a global network of sites developed by the Agricultural Model Intercomparison and Improvement Project (AgMIP) for Wheat was used to represent major rainfed and irrigated wheat cropping systems. Results show that projected global wheat production will change by -2.3% to 7.0% under the 1.5°C scenario and -2.4% to 10.5% under the 2.0°C scenario, compared to a baseline of 1980-2010, when considering changes in local temperature, rainfall, and global atmospheric CO2 concentration, but no changes in management or wheat cultivars. The projected impact on wheat production varies spatially; a larger increase is projected for temperate high rainfall regions than for moderate hot low rainfall and irrigated regions. Grain yields in warmer regions are more likely to be reduced than in cooler regions. Despite mostly positive impacts on global average grain yields, the frequency of extremely low yields (bottom 5 percentile of baseline distribution) and yield inter-annual variability will increase under both warming scenarios for some of the hot growing locations, including locations from the second largest global wheat producer-India, which supplies more than 14% of global wheat. The projected global impact of warming <2°C on wheat production is therefore not evenly distributed and will affect regional food security across the globe as well as food prices and trade.

9.
Glob Chang Biol ; 25(1): 155-173, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30549200

RESUMO

Wheat grain protein concentration is an important determinant of wheat quality for human nutrition that is often overlooked in efforts to improve crop production. We tested and applied a 32-multi-model ensemble to simulate global wheat yield and quality in a changing climate. Potential benefits of elevated atmospheric CO2 concentration by 2050 on global wheat grain and protein yield are likely to be negated by impacts from rising temperature and changes in rainfall, but with considerable disparities between regions. Grain and protein yields are expected to be lower and more variable in most low-rainfall regions, with nitrogen availability limiting growth stimulus from elevated CO2 . Introducing genotypes adapted to warmer temperatures (and also considering changes in CO2 and rainfall) could boost global wheat yield by 7% and protein yield by 2%, but grain protein concentration would be reduced by -1.1 percentage points, representing a relative change of -8.6%. Climate change adaptations that benefit grain yield are not always positive for grain quality, putting additional pressure on global wheat production.


Assuntos
Adaptação Fisiológica , Mudança Climática , Proteínas de Grãos/análise , Triticum/química , Triticum/fisiologia , Dióxido de Carbono/metabolismo , Secas , Qualidade dos Alimentos , Modelos Teóricos , Nitrogênio/metabolismo , Temperatura
10.
Glob Chang Biol ; 24(11): 5072-5083, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30055118

RESUMO

A recent innovation in assessment of climate change impact on agricultural production has been to use crop multimodel ensembles (MMEs). These studies usually find large variability between individual models but that the ensemble mean (e-mean) and median (e-median) often seem to predict quite well. However, few studies have specifically been concerned with the predictive quality of those ensemble predictors. We ask what is the predictive quality of e-mean and e-median, and how does that depend on the ensemble characteristics. Our empirical results are based on five MME studies applied to wheat, using different data sets but the same 25 crop models. We show that the ensemble predictors have quite high skill and are better than most and sometimes all individual models for most groups of environments and most response variables. Mean squared error of e-mean decreases monotonically with the size of the ensemble if models are added at random, but has a minimum at usually 2-6 models if best-fit models are added first. Our theoretical results describe the ensemble using four parameters: average bias, model effect variance, environment effect variance, and interaction variance. We show analytically that mean squared error of prediction (MSEP) of e-mean will always be smaller than MSEP averaged over models and will be less than MSEP of the best model if squared bias is less than the interaction variance. If models are added to the ensemble at random, MSEP of e-mean will decrease as the inverse of ensemble size, with a minimum equal to squared bias plus interaction variance. This minimum value is not necessarily small, and so it is important to evaluate the predictive quality of e-mean for each target population of environments. These results provide new information on the advantages of ensemble predictors, but also show their limitations.


Assuntos
Agricultura , Mudança Climática , Modelos Teóricos , Agricultura/métodos , Meio Ambiente , Triticum
11.
J Environ Manage ; 223: 264-274, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29933142

RESUMO

Use of chemical agricultural inputs such as nitrogen fertilisers (N) in agricultural production can cause diffuse source pollution thereby degrading the health of coastal and marine ecosystems in coastal river catchments. Previous reviewed economic assessments of N management in agricultural production seldom consider broader environmental impacts and uncertain climatic and economic conditions. This paper presents an economic risk framework for assessing economic and environmental trade-offs of N management strategies taking into account variable climatic and economic conditions. The framework is underpinned by a modelling platform that integrates Agricultural Production System sIMulation modelling (APSIM), probability theory, Monte Carlo simulation, and financial risk analysis techniques. We applied the framework to a case study in Tully, a coastal catchment in north-eastern Australia with a well-documented N pollution problem. Our results show that switching from managing N to maximise private net returns to maximising social net returns could reduce expected private net returns by $99 ha-1, but yield additional environmental benefits equal to $191 ha-1. Further, switching from managing N to maximise private returns in years with the highest profit potential (hereafter, good years) to maximising mean social net returns could reduce expected private profits in good years by $277 ha-1, but yield additional environmental benefits equal to $287 ha-1. We contend that it is essential to incorporate farmer risk behaviour and environmental impacts in analyses that inform policies aimed at enhancing adoption of management activities for mitigating deterioration of the health of coastal and marine ecosystems due to diffuse source pollution from agricultural production.


Assuntos
Monitoramento Ambiental , Nitrogênio , Saccharum , Agricultura , Austrália , Rios
12.
Front Plant Sci ; 9: 436, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29706974

RESUMO

Historically crop models have been used to evaluate crop yield responses to nitrogen (N) rates after harvest when it is too late for the farmers to make in-season adjustments. We hypothesize that the use of a crop model as an in-season forecast tool will improve current N decision-making. To explore this, we used the Agricultural Production Systems sIMulator (APSIM) calibrated with long-term experimental data for central Iowa, USA (16-years in continuous corn and 15-years in soybean-corn rotation) combined with actual weather data up to a specific crop stage and historical weather data thereafter. The objectives were to: (1) evaluate the accuracy and uncertainty of corn yield and economic optimum N rate (EONR) predictions at four forecast times (planting time, 6th and 12th leaf, and silking phenological stages); (2) determine whether the use of analogous historical weather years based on precipitation and temperature patterns as opposed to using a 35-year dataset could improve the accuracy of the forecast; and (3) quantify the value added by the crop model in predicting annual EONR and yields using the site-mean EONR and the yield at the EONR to benchmark predicted values. Results indicated that the mean corn yield predictions at planting time (R2 = 0.77) using 35-years of historical weather was close to the observed and predicted yield at maturity (R2 = 0.81). Across all forecasting times, the EONR predictions were more accurate in corn-corn than soybean-corn rotation (relative root mean square error, RRMSE, of 25 vs. 45%, respectively). At planting time, the APSIM model predicted the direction of optimum N rates (above, below or at average site-mean EONR) in 62% of the cases examined (n = 31) with an average error range of ±38 kg N ha-1 (22% of the average N rate). Across all forecast times, prediction error of EONR was about three times higher than yield predictions. The use of the 35-year weather record was better than using selected historical weather years to forecast (RRMSE was on average 3% lower). Overall, the proposed approach of using the crop model as a forecasting tool could improve year-to-year predictability of corn yields and optimum N rates. Further improvements in modeling and set-up protocols are needed toward more accurate forecast, especially for extreme weather years with the most significant economic and environmental cost.

13.
Mar Pollut Bull ; 129(1): 357-363, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29680560

RESUMO

This is a response to the published Viewpoint by Larcombe and Ridd (2018). We agree with Larcombe and Ridd (2018) that scientific merit goes hand in hand with rigorous quality control. However, we are responding here to several points raised by Larcombe and Ridd (2018) which in our view were misrepresented. We describe the formal and effective science review, synthesis and advice processes that are in place for science supporting decision-making in the Great Barrier Reef. We also respond in detail to critiques of selected publications that were used by Larcombe and Ridd (2018) as a case study to illustrate shortcomings in science quality control. We provide evidence that their representation of the published research and arguments to support the statement that "many (…) conclusions are demonstrably incorrect" is based on misinterpretation, selective use of data and over-simplification, and also ignores formal responses to previously published critiques.


Assuntos
Política Ambiental , Controle de Qualidade
15.
Front Plant Sci ; 8: 1504, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28928756

RESUMO

Sugarcane production relies on the application of large amounts of nitrogen (N) fertilizer. However, application of N in excess of crop needs can lead to loss of N to the environment, which can negatively impact ecosystems. This is of particular concern in Australia where the majority of sugarcane is grown within catchments that drain directly into the World Heritage listed Great Barrier Reef Marine Park. Multiple factors that impact crop yield and N inputs of sugarcane production systems can affect N use efficiency (NUE), yet the efficacy many of these factors have not been examined in detail. We undertook an extensive simulation analysis of NUE in Australian sugarcane production systems to investigate (1) the impacts of climate on factors determining NUE, (2) the range and drivers of NUE, and (3) regional variation in sugarcane N requirements. We found that the interactions between climate, soils, and management produced a wide range of simulated NUE, ranging from ∼0.3 Mg cane (kg N)-1, where yields were low (i.e., <50 Mg ha-1) and N inputs were high, to >5 Mg cane (kg N)-1 in plant crops where yields were high and N inputs low. Of the management practices simulated (N fertilizer rate, timing, and splitting; fallow management; tillage intensity; and in-field traffic management), the only practice that significantly influenced NUE in ratoon crops was N fertilizer application rate. N rate also influenced NUE in plant crops together with the management of the preceding fallow. In addition, there is regional variation in N fertilizer requirement that could make N fertilizer recommendations more specific. While our results show that complex interrelationships exist between climate, crop growth, N fertilizer rates and N losses to the environment, they highlight the priority that should be placed on optimizing N application rate and fallow management to improve NUE in Australian sugarcane production systems. New initiatives in seasonal climate forecasting, decisions support systems and enhanced efficiency fertilizers have potential for making N fertilizer management more site specific, an action that should facilitate increased NUE.

18.
Nat Plants ; 3: 17102, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28714956

RESUMO

Increasing the accuracy of crop productivity estimates is a key element in planning adaptation strategies to ensure global food security under climate change. Process-based crop models are effective means to project climate impact on crop yield, but have large uncertainty in yield simulations. Here, we show that variations in the mathematical functions currently used to simulate temperature responses of physiological processes in 29 wheat models account for >50% of uncertainty in simulated grain yields for mean growing season temperatures from 14 °C to 33 °C. We derived a set of new temperature response functions that when substituted in four wheat models reduced the error in grain yield simulations across seven global sites with different temperature regimes by 19% to 50% (42% average). We anticipate the improved temperature responses to be a key step to improve modelling of crops under rising temperature and climate change, leading to higher skill of crop yield projections.


Assuntos
Agricultura , Produtos Agrícolas/crescimento & desenvolvimento , Temperatura , Simulação por Computador , Modelos Biológicos
19.
Front Plant Sci ; 8: 731, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28539929

RESUMO

Soil organic carbon (SOC) is an important and manageable property of soils that impacts on multiple ecosystem services through its effect on soil processes such as nitrogen (N) cycling and soil physical properties. There is considerable interest in increasing SOC concentration in agro-ecosystems worldwide. In some agro-ecosystems, increased SOC has been found to enhance the provision of ecosystem services such as the provision of food. However, increased SOC may increase the environmental footprint of some agro-ecosystems, for example by increasing nitrous oxide emissions. Given this uncertainty, progress is needed in quantifying the impact of increased SOC concentration on agro-ecosystems. Increased SOC concentration affects both N cycling and soil physical properties (i.e., water holding capacity). Thus, the aim of this study was to quantify the contribution, both positive and negative, of increased SOC concentration on ecosystem services provided by wheat agro-ecosystems. We used the Agricultural Production Systems sIMulator (APSIM) to represent the effect of increased SOC concentration on N cycling and soil physical properties, and used model outputs as proxies for multiple ecosystem services from wheat production agro-ecosystems at seven locations around the world. Under increased SOC, we found that N cycling had a larger effect on a range of ecosystem services (food provision, filtering of N, and nitrous oxide regulation) than soil physical properties. We predicted that food provision in these agro-ecosystems could be significantly increased by increased SOC concentration when N supply is limiting. Conversely, we predicted no significant benefit to food production from increasing SOC when soil N supply (from fertiliser and soil N stocks) is not limiting. The effect of increasing SOC on N cycling also led to significantly higher nitrous oxide emissions, although the relative increase was small. We also found that N losses via deep drainage were minimally affected by increased SOC in the dryland agro-ecosystems studied, but increased in the irrigated agro-ecosystem. Therefore, we show that under increased SOC concentration, N cycling contributes both positively and negatively to ecosystem services depending on supply, while the effects on soil physical properties are negligible.

20.
Glob Chang Biol ; 23(5): 1806-1820, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28134461

RESUMO

Elevated atmospheric CO2 concentrations ([CO2 ]) cause direct changes in crop physiological processes (e.g. photosynthesis and stomatal conductance). To represent these CO2 responses, commonly used crop simulation models have been amended, using simple and semicomplex representations of the processes involved. Yet, there is no standard approach to and often poor documentation of these developments. This study used a bottom-up approach (starting with the APSIM framework as case study) to evaluate modelled responses in a consortium of commonly used crop models and illuminate whether variation in responses reflects true uncertainty in our understanding compared to arbitrary choices of model developers. Diversity in simulated CO2 responses and limited validation were common among models, both within the APSIM framework and more generally. Whereas production responses show some consistency up to moderately high [CO2 ] (around 700 ppm), transpiration and stomatal responses vary more widely in nature and magnitude (e.g. a decrease in stomatal conductance varying between 35% and 90% among models was found for [CO2 ] doubling to 700 ppm). Most notably, nitrogen responses were found to be included in few crop models despite being commonly observed and critical for the simulation of photosynthetic acclimation, crop nutritional quality and carbon allocation. We suggest harmonization and consideration of more mechanistic concepts in particular subroutines, for example, for the simulation of N dynamics, as a way to improve our predictive understanding of CO2 responses and capture secondary processes. Intercomparison studies could assist in this aim, provided that they go beyond simple output comparison and explicitly identify the representations and assumptions that are causal for intermodel differences. Additionally, validation and proper documentation of the representation of CO2 responses within models should be prioritized.


Assuntos
Dióxido de Carbono , Produção Agrícola , Carbono , Modelos Teóricos , Nitrogênio , Fotossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...