Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Environ Health ; 16(1): 98, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28893249

RESUMO

BACKGROUND: The eruptions of Eyjafjallajökull (2010) and Grímsvötn (2011), Iceland, triggered immediate, international consideration of the respiratory health hazard of inhaling volcanic ash, and prompted the need to estimate the potential hazard posed by future eruptions of Iceland's volcanoes to Icelandic and Northern European populations. METHODS: A physicochemical characterization and toxicological assessment was conducted on a suite of archived ash samples spanning the spectrum of past eruptions (basaltic to rhyolitic magmatic composition) of Icelandic volcanoes following a protocol specifically designed by the International Volcanic Health Hazard Network. RESULTS: Icelandic ash can be of a respirable size (up to 11.3 vol.% < 4 µm), but the samples did not display physicochemical characteristics of pathogenic particulate in terms of composition or morphology. Ash particles were generally angular, being composed of fragmented glass and crystals. Few fiber-like particles were observed, but those present comprised glass or sodium oxides, and are not related to pathogenic natural fibers, like asbestos or fibrous zeolites, thereby limiting concern of associated respiratory diseases. None of the samples contained cristobalite or tridymite, and only one sample contained quartz, minerals of interest due to the potential to cause silicosis. Sample surface areas are low, ranging from 0.4 to 1.6 m2 g-1, which aligns with analyses on ash from other eruptions worldwide. All samples generated a low level of hydroxyl radicals (HO•), a measure of surface reactivity, through the iron-catalyzed Fenton reaction compared to concurrently analyzed comparative samples. However, radical generation increased after 'refreshing' sample surfaces, indicating that newly erupted samples may display higher reactivity. A composition-dependent range of available surface iron was measured after a 7-day incubation, from 22.5 to 315.7 µmol m-2, with mafic samples releasing more iron than silicic samples. All samples were non-reactive in a test of red blood cell-membrane damage. CONCLUSIONS: The primary particle-specific concern is the potential for future eruptions of Iceland's volcanoes to generate fine, respirable material and, thus, to increase ambient PM concentrations. This particularly applies to highly explosive silicic eruptions, but can also hold true for explosive basaltic eruptions or discrete events associated with basaltic fissure eruptions.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Material Particulado/efeitos adversos , Silicatos/efeitos adversos , Erupções Vulcânicas/efeitos adversos , Poluentes Atmosféricos/análise , Humanos , Islândia , Tamanho da Partícula , Material Particulado/análise , Silicatos/análise , Erupções Vulcânicas/análise
3.
Nature ; 546(7659): 485-491, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28640263

RESUMO

Aerosols have a potentially large effect on climate, particularly through their interactions with clouds, but the magnitude of this effect is highly uncertain. Large volcanic eruptions produce sulfur dioxide, which in turn produces aerosols; these eruptions thus represent a natural experiment through which to quantify aerosol-cloud interactions. Here we show that the massive 2014-2015 fissure eruption in Holuhraun, Iceland, reduced the size of liquid cloud droplets-consistent with expectations-but had no discernible effect on other cloud properties. The reduction in droplet size led to cloud brightening and global-mean radiative forcing of around -0.2 watts per square metre for September to October 2014. Changes in cloud amount or cloud liquid water path, however, were undetectable, indicating that these indirect effects, and cloud systems in general, are well buffered against aerosol changes. This result will reduce uncertainties in future climate projections, because we are now able to reject results from climate models with an excessive liquid-water-path response.

4.
Bull Volcanol ; 79(1): 11, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32269405

RESUMO

Volcanic rootless cones are the products of thermohydraulic explosions involving rapid heat transfer from active lava (fuel) to external sources of water (coolant). Rootless eruptions are attributed to molten fuel-coolant interactions (MFCIs), but previous studies have not performed systematic investigations of rootless tephrostratigraphy and grain-size distributions to establish a baseline for evaluating relationships between environmental factors, MFCI efficiency, fragmentation, and patterns of tephra dispersal. This study examines a 13.55-m-thick vertical section through an archetypal rootless tephra sequence, which includes a rhythmic succession of 28 bed pairs. Each bed pair is interpreted to be the result of a discrete explosion cycle, with fine-grained basal material emplaced dominantly as tephra fall during an energetic opening phase, followed by the deposition of coarser-grained material mainly as ballistic ejecta during a weaker coda phase. Nine additional layers are interleaved throughout the stratigraphy and are interpreted to be dilute pyroclastic density current (PDC) deposits. Overall, the stratigraphy divides into four units: unit 1 contains the largest number of sediment-rich PDC deposits, units 2 and 3 are dominated by a rhythmic succession of bed pairs, and unit 4 includes welded layers. This pattern is consistent with a general decrease in MFCI efficiency due to the depletion of locally available coolant (i.e., groundwater or wet sediments). Changing conduit/vent geometries, mixing conditions, coolant and melt temperatures, and/or coolant impurities may also have affected MFCI efficiency, but the rhythmic nature of the bed pairs implies a periodic explosion process, which can be explained by temporary increases in the water-to-lava mass ratio during cycles of groundwater recharge.

5.
Sci Rep ; 2: 572, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22893851

RESUMO

The 39-day long eruption at the summit of Eyjafjallajökull volcano in April-May 2010 was of modest size but ash was widely dispersed. By combining data from ground surveys and remote sensing we show that the erupted material was 4.8±1.2·10¹¹â€…kg (benmoreite and trachyte, dense rock equivalent volume 0.18±0.05 km³). About 20% was lava and water-transported tephra, 80% was airborne tephra (bulk volume 0.27 km³) transported by 3-10 km high plumes. The airborne tephra was mostly fine ash (diameter <1000 µm). At least 7·10¹°â€…kg (70 Tg) was very fine ash (<28 µm), several times more than previously estimated via satellite retrievals. About 50% of the tephra fell in Iceland with the remainder carried towards south and east, detected over ~7 million km² in Europe and the North Atlantic. Of order 10¹°â€…kg (2%) are considered to have been transported longer than 600-700 km with <108 kg (<0.02%) reaching mainland Europe.


Assuntos
Erupções Vulcânicas , Europa (Continente) , Geografia , Islândia , Tamanho da Partícula , Fatores de Tempo
6.
Proc Natl Acad Sci U S A ; 108(38): 15710-5, 2011 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-21930954

RESUMO

Historical records show that the A.D. 1783-1784 Laki eruption in Iceland caused severe environmental stress and posed a health hazard far beyond the borders of Iceland. Given the reasonable likelihood of such an event recurring, it is important to assess the scale on which a future eruption could impact society. We quantify the potential health effects caused by an increase in air pollution during a future Laki-style eruption using a global aerosol model together with concentration-response functions derived from current epidemiological studies. The concentration of particulate matter with diameters smaller than 2.5 µm is predicted to double across central, western, and northern Europe during the first 3 mo of the eruption. Over land areas of Europe, the current World Health Organization 24-h air quality guideline for particulate matter with diameters smaller than 2.5 µm is exceeded an additional 36 d on average over the course of the eruption. Based on the changes in particulate air pollution, we estimate that approximately 142,000 additional cardiopulmonary fatalities (with a 95% confidence interval of 52,000-228,000) could occur in Europe. In terms of air pollution, such a volcanic eruption would therefore be a severe health hazard, increasing excess mortality in Europe on a scale that likely exceeds excess mortality due to seasonal influenza.


Assuntos
Poluição do Ar/efeitos adversos , Previsões , Mortalidade/tendências , Erupções Vulcânicas/efeitos adversos , Poluentes Atmosféricos/análise , Algoritmos , Saúde Ambiental/métodos , Saúde Ambiental/normas , Monitoramento Ambiental/métodos , Monitoramento Ambiental/normas , Monitoramento Epidemiológico , Europa (Continente)/epidemiologia , Geografia , História do Século XVIII , Humanos , Islândia/epidemiologia , Tamanho da Partícula , Material Particulado/análise , Medição de Risco/métodos , Medição de Risco/normas , Fatores de Risco , Erupções Vulcânicas/história
7.
Science ; 301(5636): 1064-9, 2003 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-12881572

RESUMO

The Hawaiian-Emperor hotspot track has a prominent bend, which has served as the basis for the theory that the Hawaiian hotspot, fixed in the deep mantle, traced a change in plate motion. However, paleomagnetic and radiometric age data from samples recovered by ocean drilling define an age-progressive paleolatitude history, indicating that the Emperor Seamount trend was principally formed by the rapid motion (over 40 millimeters per year) of the Hawaiian hotspot plume during Late Cretaceous to early-Tertiary times (81 to 47 million years ago). Evidence for motion of the Hawaiian plume affects models of mantle convection and plate tectonics, changing our understanding of terrestrial dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...