Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 233(1): 84-118, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34515358

RESUMO

Crop diversity underpins the productivity, resilience and adaptive capacity of agriculture. Loss of this diversity, termed crop genetic erosion, is therefore concerning. While alarms regarding evident declines in crop diversity have been raised for over a century, the magnitude, trajectory, drivers and significance of these losses remain insufficiently understood. We outline the various definitions, measurements, scales and sources of information on crop genetic erosion. We then provide a synthesis of evidence regarding changes in the diversity of traditional crop landraces on farms, modern crop cultivars in agriculture, crop wild relatives in their natural habitats and crop genetic resources held in conservation repositories. This evidence indicates that marked losses, but also maintenance and increases in diversity, have occurred in all these contexts, the extent depending on species, taxonomic and geographic scale, and region, as well as analytical approach. We discuss steps needed to further advance knowledge around the agricultural and societal significance, as well as conservation implications, of crop genetic erosion. Finally, we propose actions to mitigate, stem and reverse further losses of crop diversity.


Assuntos
Conservação dos Recursos Naturais , Produtos Agrícolas , Agricultura , Produtos Agrícolas/genética , Ecossistema
2.
Plants (Basel) ; 10(9)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34579401

RESUMO

Recognition of the importance of plant genetic resources started in Germany at the end of the 19th century. Plant research and breeding began to develop in the 1920s. Formal structures of public institutions were founded, long-term conservation facilities were established, private breeding initiatives developed. In 1990, the German reunification required an assessment of the existing research and breeding landscape. This milestone allowed a comprehensive overview of the great number of stakeholders, active in the entire range of tasks related to plant genetic resources. The Federal Ministry of Agriculture then developed a conceptual approach for an efficient governance structure and published its concept of a national programme for the conservation and sustainable use of genetic resources for food and agriculture in 2000. It recognized the sharing of decentral responsibilities among the respective public and private actors and governmental levels with dis-tributed mandates and funding. It also led to the establishment of a central information and coordination center for genetic resources, which facilitates the data sharing, communication, and co-operation among stakeholders, supports public awareness and advises the Federal Ministry on national policies and efficient European and global cooperation. It also supports efficient contributions of German stakeholders into European structures and international bodies. An equivalent conceptual approach and governance structure is recommended to be established at European level.

3.
Plants (Basel) ; 9(8)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751715

RESUMO

Crop wild relatives (CWR, plural CWRs) are those wild species that are regarded as the ancestors of our cultivated crops. It was only at the end of the last century that they were accorded a high priority for their conservation and, thus, for many genebanks, they are a new and somewhat unknown set of plant genetic resources for food and agriculture. After defining and characterizing CWR and their general threat status, providing an assessment of biological peculiarities of CWR with respect to conservation management, illustrating the need for prioritization and addressing the importance of data and information, we made a detailed assessment of specific aspects of CWRs of direct relevance for their conservation and use. This assessment was complemented by an overview of the current status of CWRs conservation and use, including facts and figures on the in situ conservation, on the ex situ conservation in genebanks and botanic gardens, as well as of the advantages of a combination of in situ and ex situ conservation, the so-called complementary conservation approach. In addition, a brief assessment of the situation with respect to the use of CWRs was made. From these assessments we derived the needs for action in order to achieve a more effective and efficient conservation and use, specifically with respect to the documentation of CWRs, their in situ and ex situ, as well as their complementarity conservation, and how synergies between these components can be obtained. The review was concluded with suggestions on how use can be strengthened, as well as the conservation system at large at the local, national, and regional/international level. Finally, based on the foregoing assessments, a number of recommendations were elaborated on how CWRs can be better conserved and used in order to exploit their potential benefits more effectively.

4.
Evol Appl ; 10(10): 965-977, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29151853

RESUMO

Ensuring the availability of the broadest possible germplasm base for agriculture in the face of increasingly uncertain and variable patterns of biotic and abiotic change is fundamental for the world's future food supply. While ex situ conservation plays a major role in the conservation and availability of crop germplasm, it may be insufficient to ensure this. In situ conservation aims to maintain target species and the collective genotypes they represent under evolution. A major rationale for this view is based on the likelihood that continued exposure to changing selective forces will generate and favor new genetic variation and an increased likelihood that rare alleles that may be of value to future agriculture are maintained. However, the evidence that underpins this key rationale remains fragmented and has not been examined systematically, thereby decreasing the perceived value and support for in situ conservation for agriculture and food systems and limiting the conservation options available. This study reviews evidence regarding the likelihood and rate of evolutionary change in both biotic and abiotic traits for crops and their wild relatives, placing these processes in a realistic context in which smallholder farming operates and crop wild relatives continue to exist. It identifies areas of research that would contribute to a deeper understanding of these processes as the basis for making them more useful for future crop adaptation.

5.
PLoS One ; 11(8): e0160745, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27513459

RESUMO

Informed collecting, conservation, monitoring and utilization of genetic diversity requires knowledge of the distribution and structure of the variation occurring in a species. Hordeum vulgare subsp. spontaneum (K. Koch) Thell., a primary wild relative of barley, is an important source of genetic diversity for barley improvement and co-occurs with the domesticate within the center of origin. We studied the current distribution of genetic diversity and population structure in H. vulgare subsp. spontaneum in Jordan and investigated whether it is correlated with either spatial or climatic variation inferred from publically available climate layers commonly used in conservation and ecogeographical studies. The genetic structure of 32 populations collected in 2012 was analyzed with 37 SSRs. Three distinct genetic clusters were identified. Populations were characterized by admixture and high allelic richness, and genetic diversity was concentrated in the northern part of the study area. Genetic structure, spatial location and climate were not correlated. This may point out a limitation in using large scale climatic data layers to predict genetic diversity, especially as it is applied to regional genetic resources collections in H. vulgare subsp. spontaneum.


Assuntos
Genes de Plantas/genética , Marcadores Genéticos/genética , Variação Genética , Hordeum/genética , Repetições de Microssatélites/genética , DNA de Plantas/genética , Genótipo , Geografia , Jordânia , Família Multigênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA