Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4261, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769341

RESUMO

Triazoles, the most widely used class of antifungal drugs, inhibit the biosynthesis of ergosterol, a crucial component of the fungal plasma membrane. Inhibition of a separate ergosterol biosynthetic step, catalyzed by the sterol C-24 methyltransferase Erg6, reduces the virulence of pathogenic yeasts, but its effects on filamentous fungal pathogens like Aspergillus fumigatus remain unexplored. Here, we show that the lipid droplet-associated enzyme Erg6 is essential for the viability of A. fumigatus and other Aspergillus species, including A. lentulus, A. terreus, and A. nidulans. Downregulation of erg6 causes loss of sterol-rich membrane domains required for apical extension of hyphae, as well as altered sterol profiles consistent with the Erg6 enzyme functioning upstream of the triazole drug target, Cyp51A/Cyp51B. Unexpectedly, erg6-repressed strains display wild-type susceptibility against the ergosterol-active triazole and polyene antifungals. Finally, we show that erg6 repression results in significant reduction in mortality in a murine model of invasive aspergillosis. Taken together with recent studies, our work supports Erg6 as a potentially pan-fungal drug target.


Assuntos
Antifúngicos , Aspergilose , Aspergillus , Ergosterol , Proteínas Fúngicas , Metiltransferases , Triazóis , Animais , Metiltransferases/metabolismo , Metiltransferases/genética , Antifúngicos/farmacologia , Aspergillus/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Camundongos , Aspergilose/microbiologia , Aspergilose/tratamento farmacológico , Ergosterol/metabolismo , Ergosterol/biossíntese , Triazóis/farmacologia , Regulação Fúngica da Expressão Gênica , Aspergillus fumigatus/genética , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/metabolismo , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Hifas/genética , Hifas/metabolismo , Feminino , Testes de Sensibilidade Microbiana , Virulência/genética
2.
Nat Commun ; 15(1): 3642, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684680

RESUMO

Triazole antifungals function as ergosterol biosynthesis inhibitors and are frontline therapy for invasive fungal infections, such as invasive aspergillosis. The primary mechanism of action of triazoles is through the specific inhibition of a cytochrome P450 14-α-sterol demethylase enzyme, Cyp51A/B, resulting in depletion of cellular ergosterol. Here, we uncover a clinically relevant secondary mechanism of action for triazoles within the ergosterol biosynthesis pathway. We provide evidence that triazole-mediated inhibition of Cyp51A/B activity generates sterol intermediate perturbations that are likely decoded by the sterol sensing functions of HMG-CoA reductase and Insulin-Induced Gene orthologs as increased pathway activity. This, in turn, results in negative feedback regulation of HMG-CoA reductase, the rate-limiting step of sterol biosynthesis. We also provide evidence that HMG-CoA reductase sterol sensing domain mutations previously identified as generating resistance in clinical isolates of Aspergillus fumigatus partially disrupt this triazole-induced feedback. Therefore, our data point to a secondary mechanism of action for the triazoles: induction of HMG-CoA reductase negative feedback for downregulation of ergosterol biosynthesis pathway activity. Abrogation of this feedback through acquired mutations in the HMG-CoA reductase sterol sensing domain diminishes triazole antifungal activity against fungal pathogens and underpins HMG-CoA reductase-mediated resistance.


Assuntos
Antifúngicos , Aspergillus fumigatus , Ergosterol , Proteínas Fúngicas , Hidroximetilglutaril-CoA Redutases , Triazóis , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/genética , Antifúngicos/farmacologia , Triazóis/farmacologia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Ergosterol/metabolismo , Ergosterol/biossíntese , Hidroximetilglutaril-CoA Redutases/metabolismo , Hidroximetilglutaril-CoA Redutases/genética , Aspergilose/tratamento farmacológico , Aspergilose/microbiologia , Farmacorresistência Fúngica/genética , Farmacorresistência Fúngica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Testes de Sensibilidade Microbiana , Esterol 14-Desmetilase/metabolismo , Esterol 14-Desmetilase/genética , Humanos , Mutação
3.
mSphere ; 9(3): e0069523, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38349166

RESUMO

Aspergillus fumigatus is a major invasive mold pathogen and the most frequent etiologic agent of invasive aspergillosis. The currently available treatments for invasive aspergillosis are limited in both number and efficacy. Our recent work has uncovered that the ß-glucan synthase inhibitors, the echinocandins, are fungicidal against strains of A. fumigatus with defects in septation initiation network (SIN) kinase activity. These drugs are known to be fungistatic against strains with normal septation. Surprisingly, SIN kinase mutant strains also failed to invade lung tissue and were significantly less virulent in immunosuppressed mouse models. Inhibiting septation in filamentous fungi is therefore an exciting therapeutic prospect to both reduce virulence and improve current antifungal therapy. However, the SIN remains understudied in pathogenic fungi. To address this knowledge gap, we characterized the putative regulatory components of the A. fumigatus SIN. These included the GTPase, SpgA, it's two-component GTPase-activating protein, ByrA/BubA, and the kinase activators, SepM and MobA. Deletion of spgA, byrA, or bubA resulted in no overt septation or echinocandin susceptibility phenotypes. In contrast, our data show that deletion of sepM or mobA largely phenocopies disruption of their SIN kinase binding partners, sepL and sidB, respectively. Reduced septum formation, echinocandin hypersusceptibility, and reduced virulence were generated by loss of either gene. These findings provide strong supporting evidence that septa are essential not only for withstanding the cell wall disrupting effects of echinocandins but are also critical for the establishment of invasive disease. Therefore, pharmacological SIN inhibition may be an exciting strategy for future antifungal drug development.IMPORTANCESepta are important structural determinants of echinocandin susceptibility and tissue invasive growth for the ubiquitous fungal pathogen Aspergillus fumigatus. Components of the septation machinery therefore represent promising novel antifungal targets to improve echinocandin activity and reduce virulence. However, little is known about septation regulation in A. fumigatus. Here, we characterize the predicted regulatory components of the A. fumigatus septation initiation network. We show that the kinase activators SepM and MobA are vital for proper septation and echinocandin resistance, with MobA playing an essential role. Null mutants of mobA displayed significantly reduced virulence in a mouse model, underscoring the importance of this pathway for A. fumigatus pathogenesis.


Assuntos
Aspergilose , Aspergillus fumigatus , Animais , Camundongos , Equinocandinas/farmacologia , Antifúngicos/metabolismo , Aspergilose/tratamento farmacológico , Aspergilose/microbiologia , Fungos
4.
Front Cell Infect Microbiol ; 14: 1327299, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38343890

RESUMO

In this study, two distinct in vitro infection models of Aspergillus fumigatus, using murine macrophages (RAW264.7) and human lung epithelial cells (A549), were employed to identify the genes important for fungal adaptation during infection. Transcriptomic analyses of co-incubated A. fumigatus uncovered 140 fungal genes up-regulated in common between both models that, when compared with a previously published in vivo transcriptomic study, allowed the identification of 13 genes consistently up-regulated in all three infection conditions. Among them, the maiA gene, responsible for a critical step in the L-phenylalanine degradation pathway, was identified. Disruption of maiA resulted in a mutant strain unable to complete the Phe degradation pathway, leading to an excessive production of pyomelanin when this amino acid served as the sole carbon source. Moreover, the disruption mutant exhibited noticeable cell wall abnormalities, with reduced levels of ß-glucans within the cell wall but did not show lack of chitin or mannans. The maiA-1 mutant strain induced reduced inflammation in primary macrophages and displayed significantly lower virulence in a neutropenic mouse model of infection. This is the first study linking the A. fumigatus maiA gene to fungal cell wall homeostasis and virulence.


Assuntos
Aspergillus fumigatus , Proteínas Fúngicas , Humanos , Animais , Camundongos , Virulência/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Homeostase , Parede Celular/metabolismo
5.
bioRxiv ; 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37609350

RESUMO

Ergosterol is a critical component of fungal plasma membranes. Although many currently available antifungal compounds target the ergosterol biosynthesis pathway for antifungal effect, current knowledge regarding ergosterol synthesis remains incomplete for filamentous fungal pathogens like Aspergillus fumigatus. Here, we show for the first time that the lipid droplet-associated sterol C-24 methyltransferase, Erg6, is essential for A. fumigatus viability. We further show that this essentiality extends to additional Aspergillus species, including A. lentulus, A. terreus, and A. nidulans. Neither the overexpression of a putative erg6 paralog, smt1, nor the exogenous addition of ergosterol could rescue erg6 deficiency. Importantly, Erg6 downregulation results in a dramatic decrease in ergosterol and accumulation in lanosterol and is further characterized by diminished sterol-rich plasma membrane domains (SRDs) at hyphal tips. Unexpectedly, erg6 repressed strains demonstrate wild-type susceptibility against the ergosterol-active triazole and polyene antifungals. Finally, repressing erg6 expression reduced fungal burden accumulation in a murine model of invasive aspergillosis. Taken together, our studies suggest that Erg6, which shows little homology to mammalian proteins, is potentially an attractive antifungal drug target for therapy of Aspergillus infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...