Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(12): e2318716121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38483991

RESUMO

Deep convection in the Asian summer monsoon is a significant transport process for lifting pollutants from the planetary boundary layer to the tropopause level. This process enables efficient injection into the stratosphere of reactive species such as chlorinated very-short-lived substances (Cl-VSLSs) that deplete ozone. Past studies of convective transport associated with the Asian summer monsoon have focused mostly on the south Asian summer monsoon. Airborne observations reported in this work identify the East Asian summer monsoon convection as an effective transport pathway that carried record-breaking levels of ozone-depleting Cl-VSLSs (mean organic chlorine from these VSLSs ~500 ppt) to the base of the stratosphere. These unique observations show total organic chlorine from VSLSs in the lower stratosphere over the Asian monsoon tropopause to be more than twice that previously reported over the tropical tropopause. Considering the recently observed increase in Cl-VSLS emissions and the ongoing strengthening of the East Asian summer monsoon under global warming, our results highlight that a reevaluation of the contribution of Cl-VSLS injection via the Asian monsoon to the total stratospheric chlorine budget is warranted.

2.
Sci Adv ; 10(9): eadk0593, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38416836

RESUMO

We introduce a climate intervention strategy focused on decreasing water vapor (WV) concentrations near the tropopause and in the stratosphere to increase outbound longwave radiation. The mechanism is the targeted injection of ice-nucleating particles (INP) in air supersaturated with respect to ice at high altitudes in the tropical entryway to the stratosphere. Ice formation in this region is a critical control of stratospheric WV. Recent airborne in situ data indicate that targeting only a small fraction of air parcels in the region would be sufficient to achieve substantial removal of water. This "intentional stratospheric dehydration" (ISD) strategy would not counteract a large fraction of the forcing from carbon dioxide but may contribute to a portfolio of climate interventions by acting with different time and length scales of impact and risk than other interventions that are already under consideration. We outline the idea, its plausibility, technical hurdles, and side effects to be considered.

3.
Proc Natl Acad Sci U S A ; 120(46): e2219547120, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37903246

RESUMO

The Hunga Tonga-Hunga Ha'apai (HT-HH) volcanic eruptions on January 13 and 15, 2022, produced a plume with the highest signal in stratospheric aerosol optical depth observed since the eruption of Mt. Pinatubo in 1991. Suites of balloon-borne instruments on a series of launches from Réunion Island intercepted the HT-HH plume between 7 and 10 d of the eruptions, yielding observations of the aerosol number and size distribution and sulfur dioxide (SO2) and water vapor (H2O) concentrations. The measurements reveal an unexpected abundance of large particles in the plume, constrain the total sulfur injected to approximately 0.2 Tg, provide information on the altitude of the injection, and indicate that the formation of sulfuric acid aerosol was complete within 3 wk. Large H2O enhancements contributed as much as ~30% to ambient aerosol surface area and likely accelerated SO2 oxidation and aerosol formation rates in the plume to approximately three times faster than under normal stratospheric conditions.

4.
Science ; 382(6668): eadg2551, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37856589

RESUMO

The eruption of the Hunga Tonga-Hunga Ha'apai volcano on 15 January 2022 offered a good opportunity to explore the early impacts of tropical volcanic eruptions on stratospheric composition. Balloon-borne observations near Réunion Island revealed the unprecedented amount of water vapor injected by the volcano. The enhanced stratospheric humidity, radiative cooling, and expanded aerosol surface area in the volcanic plume created the ideal conditions for swift ozone depletion of 5% in the tropical stratosphere in just 1 week. The decrease in hydrogen chloride by 0.4 parts per million by volume (ppbv) and the increase in chlorine monoxide by 0.4 ppbv provided compelling evidence for chlorine activation within the volcanic plume. This study enhances our understanding of the effect of this unusual volcanic eruption on stratospheric chemistry and provides insights into possible chemistry changes that may occur in a changing climate.

5.
Sensors (Basel) ; 23(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37050572

RESUMO

Small uncrewed aerial systems (sUASs) have the potential to serve as ideal platforms for high spatial and temporal resolution wildfire measurements to complement aircraft and satellite observations, but typically have very limited payload capacity. Recognizing the need for improved data from wildfire management and smoke forecasting communities and the potential advantages of sUAS platforms, the Nighttime Fire Observations eXperiment (NightFOX) project was funded by the US National Oceanic and Atmospheric Administration (NOAA) to develop a suite of miniaturized, relatively low-cost scientific instruments for wildfire-related measurements that would satisfy the size, weight and power constraints of a sUAS payload. Here we report on a remote sensing system developed under the NightFOX project that consists of three optical instruments with five individual sensors for wildfire mapping and fire radiative power measurement and a GPS-aided inertial navigation system module for aircraft position and attitude determination. The first instrument consists of two scanning telescopes with infrared (IR) channels using narrow wavelength bands near 1.6 and 4 µm to make fire radiative power measurements with a blackbody equivalent temperature range of 320-1500 °C. The second instrument is a broadband shortwave (0.95-1.7 µm) IR imager for high spatial resolution fire mapping. Both instruments are custom built. The third instrument is a commercial off-the-shelf visible/thermal IR dual camera. The entire system weighs about 1500 g and consumes approximately 15 W of power. The system has been successfully operated for fire observations using a Black Swift Technologies S2 small, fixed-wing UAS for flights over a prescribed grassland burn in Colorado and onboard an NOAA Twin Otter crewed aircraft over several western US wildfires during the 2019 Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) field mission.

6.
Science ; 365(6453): 587-590, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31395782

RESUMO

In 2017, western Canadian wildfires injected smoke into the stratosphere that was detectable by satellites for more than 8 months. The smoke plume rose from 12 to 23 kilometers within 2 months owing to solar heating of black carbon, extending the lifetime and latitudinal spread. Comparisons of model simulations to the rate of observed lofting indicate that 2% of the smoke mass was black carbon. The observed smoke lifetime in the stratosphere was 40% shorter than calculated with a standard model that does not consider photochemical loss of organic carbon. Photochemistry is represented by using an empirical ozone-organics reaction probability that matches the observed smoke decay. The observed rapid plume rise, latitudinal spread, and photochemical reactions provide new insights into potential global climate impacts from nuclear war.


Assuntos
Fumaça , Ozônio Estratosférico/análise , Incêndios Florestais , Canadá
7.
J Geophys Res Atmos ; 123(11): 6053-6069, 2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-31832294

RESUMO

Pervasive cirrus clouds in the tropical tropopause layer (TTL) play an important role in determining the composition of stratospheric air through dehydration of tropospheric air entering the stratosphere. This dehydration affects Earth's energy budget and climate, yet uncertainties remain regarding the microphysical processes that govern TTL cirrus. TTL cirrus were sampled with the NASA Global Hawk UAV for over 30 hr in the Western Pacific in 2014 during the Airborne Tropical TRopopause EXperiment. In situ measurements by a Fast Cloud Droplet Probe and Hawkeye probe (combination Fast Cloud Droplet Probe, Two-Dimensional Stereo optical array probe, and Cloud Particle Imager) provided particle concentrations and sizing between 1- and 1,280-µm diameter and high resolution images for habit identification. We present the variability in ice concentrations, size distributions, and habits as functions of temperature, altitude, and time since convective influence. Observed ice particles were predominantly small and quasi-spheroidal in shape, with the percentage of quasi-spheroids increasing with decreasing temperature. In comparison to the large fraction of the population consisting of quasi-spheroids, faceted habits (columns, plates, rosettes, and budding rosettes) constituted a smaller percentage of the overall population and exhibited the opposite correlation with temperature. The trend of higher percentages of faceted crystals occurring at warmer temperatures may be due to diffusional growth or aggregation as particles descend through cloud, and/or the more rapid diffusional growth rate at warmer temperatures. Sampling was typically well away from deep convection, however, and very few aggregates were observed, so the trend of higher percentages of faceted habits is likely attributable to diffusional growth.

8.
Proc Natl Acad Sci U S A ; 114(27): 6972-6977, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28630285

RESUMO

An enhanced aerosol layer near the tropopause over Asia during the June-September period of the Asian summer monsoon (ASM) was recently identified using satellite observations. Its sources and climate impact are presently not well-characterized. To improve understanding of this phenomenon, we made in situ aerosol measurements during summer 2015 from Kunming, China, then followed with a modeling study to assess the global significance. The in situ measurements revealed a robust enhancement in aerosol concentration that extended up to 2 km above the tropopause. A climate model simulation demonstrates that the abundant anthropogenic aerosol precursor emissions from Asia coupled with rapid vertical transport associated with monsoon convection leads to significant particle formation in the upper troposphere within the ASM anticyclone. These particles subsequently spread throughout the entire Northern Hemispheric (NH) lower stratosphere and contribute significantly (∼15%) to the NH stratospheric column aerosol surface area on an annual basis. This contribution is comparable to that from the sum of small volcanic eruptions in the period between 2000 and 2015. Although the ASM contribution is smaller than that from tropical upwelling (∼35%), we find that this region is about three times as efficient per unit area and time in populating the NH stratosphere with aerosol. With a substantial amount of organic and sulfur emissions in Asia, the ASM anticyclone serves as an efficient smokestack venting aerosols to the upper troposphere and lower stratosphere. As economic growth continues in Asia, the relative importance of Asian emissions to stratospheric aerosol is likely to increase.

9.
J Geophys Res Atmos ; 122(11): 6094-6107, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-31534878

RESUMO

The vertical distribution of relative humidity with respect to ice (RHI) in the Boreal wintertime Tropical Tropopause Layer (TTL, ≃14-18 km) over the Pacific is examined with the extensive dataset of measurements from the NASA Airborne Tropical TRopopause EXperiment (ATTREX). Multiple deployments of the Global Hawk during ATTREX provided hundreds of vertical profiles spanning the longitudinal extent of the Pacific with accurate measurements of temperature, pressure, water vapor concentration, ozone concentration, and cloud properties. We also compare the measured RHI distributions with results from a transport and microphysical model driven by meteorological analysis fields. Notable features in the distribution of RHI versus temperature and longitude include (1) the common occurrence of RHI values near ice saturation over the western Pacific in the lower-middle TTL (temperatures greater than 195 K); (2) low RHI values in the lower TTL over the central and eastern Pacific; (3) common occurrence of RHI values following a constant mixing ratio in the middle-to-upper TTL (temperatures between about 190 and 200 K), particularly for samples with ozone greater than about 50-100 ppbv indicating mixtures of tropospheric and stratospheric air; (4) RHI values typically near ice saturation in the coldest airmasses sampled (temperatures less than about 190 K); and (5) common occurrence of RHI values near 100% across the TTL temperature range in air parcels with low ozone mixing ratio (O3 < 50 ppbv) indicative of recent uplift by deep convection. We suggest that the typically saturated air in the lower TTL over the western Pacific is likely driven by a combination of the frequent occurrence of deep convection and the predominance of radiative heating (rising motion) in this region. The low relative humidities in the central/eastern Pacific lower TTL result from the lack of convective influence, the predominance of subsidence, and the relatively warm temperatures in the region. The nearly-constant water vapor mixing ratios in the middle-to-upper TTL likely result from the combination of slow ascent (resulting in long residence times) and wave driven temperature variability on a range of time scales (resulting in most air parcels having experienced low temperature and dehydration). The numerical simulations generally reproduce the observed RHI distribution features and sensitivity tests further emphasize the strong sensitivities of TTL relative humidity to convective input and vertical motions.

11.
J Phys Chem A ; 120(9): 1431-40, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26447682

RESUMO

A laboratory chilled mirror hygrometer (CMH), exposed to an airstream containing water vapor (H2O) and nitric acid (HNO3), has been used to demonstrate the existence of a persistent water-nitric acid condensate that has a saturation H2O vapor pressure greater than that of hexagonal ice (Ih). The condensate was routinely formed on the mirror by removing HNO3 from the airstream following the formation of an initial condensate on the mirror that resembled nitric acid trihydrate (NAT). Typical conditions for the formation of the persistent condensate were a H2O mixing ratio greater than 18 ppm, pressure of 128 hPa, and mirror temperature between 202 and 216 K. In steady-state operation, a CMH maintains a condensate of constant optical diffusivity on a mirror through control of only the mirror temperature. Maintaining the persistent condensate on the mirror required that the mirror temperature be below the H2O saturation temperature with respect to Ih by as much as 3 K, corresponding to up to 63% H2O supersaturation with respect to Ih. The condensate was observed to persist in steady state for up to 16 h. Compositional analysis of the condensate confirmed the co-condensation of H2O and HNO3 and thereby strongly supports the conclusion that the Ih supersaturation is due to residual HNO3 in the condensate. Although the exact structure or stoichiometry of the condensate could not be determined, other known stable phases of HNO3 and H2O are excluded as possible condensates. This persistent condensate, if it also forms in the upper tropical troposphere, might explain some of the high Ih supersaturations in cirrus and contrails that have been reported in the tropical tropopause region.

12.
Faraday Discuss ; 130: 211-26; discussion 241-64, 519-24, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16161786

RESUMO

The adsorption of gas-phase nitric acid onto water-ice surfaces at temperatures between 200 and 239 K has been studied over short time scales using a coated-wall flow tube coupled to a chemical ionization mass spectrometer. The nitric acid partial pressures used were between 10(-8) hPa and 10(-6) hPa, making this the first systematic study under partial pressure conditions present in the upper troposphere. Whereas previous findings using this technique have shown that the surface coverages are saturated at 2 to 3 x 10(14) molecules cm(-2) (referenced to the geometric surface area of the ice film) when partial pressures are larger than about 10(-7) hPa, the principal finding from this study is that the surface coverages are in the unsaturated regime at lower partial pressures. A conventional Langmuir adsorption isotherm describes the uptake in a quantitative manner while dissociative Langmuir isotherms that have been used in the past to model this process do not. The unsaturated surface coverages are strongly temperature dependent, in agreement with a number of field measurements of the nitric acid (or NOy) component of cirrus cloud particles. These laboratory results match those in the field better than do those measured at significantly higher partial pressures but, nevertheless, they still indicate somewhat greater uptake, particularly at higher temperatures.

13.
Science ; 304(5671): 722-5, 2004 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-15118159

RESUMO

Forest emissions of biogenic volatile organic compounds (BVOCs), such as isoprene and other terpenes, play a role in the production of tropospheric ozone and aerosols. In a northern Michigan forest, the direct measurement of total OH reactivity, which is the inverse of the OH lifetime, was significantly greater than expected. The difference between measured and expected OH reactivity, called the missing OH reactivity, increased with temperature, as did emission rates for terpenes and other BVOCs. These measurements are consistent with the hypothesis that unknown reactive BVOCs, perhaps terpenes, provide the missing OH reactivity.


Assuntos
Atmosfera , Radical Hidroxila/química , Compostos Orgânicos/química , Árvores , Aerossóis , Butadienos/análise , Hemiterpenos/análise , Radical Hidroxila/análise , Michigan , Compostos Orgânicos/análise , Ozônio/análise , Ozônio/química , Pentanos/análise , Luz Solar , Temperatura , Terpenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...