Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 39(25): 4781-4797, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32307447

RESUMO

Combination of CDK4/6 inhibitors and endocrine therapy improves clinical outcome in advanced oestrogen receptor (ER)-positive breast cancer, however relapse is inevitable. Here, we show in model systems that other than loss of RB1 few gene-copy number (CN) alterations are associated with irreversible-resistance to endocrine therapy and subsequent secondary resistance to palbociclib. Resistance to palbociclib occurred as a result of tumour cell re-wiring leading to increased expression of EGFR, MAPK, CDK4, CDK2, CDK7, CCNE1 and CCNE2. Resistance altered the ER genome wide-binding pattern, leading to decreased expression of 'classical' oestrogen-regulated genes and was accompanied by reduced sensitivity to fulvestrant and tamoxifen. Persistent CDK4 blockade decreased phosphorylation of tuberous sclerosis complex 2 (TSC2) enhancing EGFR signalling, leading to the re-wiring of ER. Kinome-knockdown confirmed dependency on ERBB-signalling and G2/M-checkpoint proteins such as WEE1, together with the cell cycle master regulator, CDK7. Noteworthy, sensitivity to CDK7 inhibition was associated with loss of ER and RB1 CN. Overall, we show that resistance to CDK4/6 inhibitors is dependent on kinase re-wiring and the redeployment of signalling cascades previously associated with endocrine resistance and highlights new therapeutic networks that can be exploited upon relapse after CDK4/6 inhibition.


Assuntos
Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Receptores de Estrogênio/genética , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Fulvestranto/administração & dosagem , Humanos , Células MCF-7 , Camundongos Endogâmicos BALB C , Camundongos Nus , Interferência de RNA , Receptores de Estrogênio/metabolismo , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Tamoxifeno/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
2.
Breast Cancer Res ; 20(1): 44, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29880014

RESUMO

BACKGROUND: Endocrine therapies are the mainstay of treatment for oestrogen receptor (ER)-positive (ER+) breast cancer (BC). However, resistance remains problematic largely due to enhanced cross-talk between ER and growth factor pathways, circumventing the need for steroid hormones. Previously, we reported the anti-proliferative effect of everolimus (RAD001-mTORC1 inhibitor) with endocrine therapy in resistance models; however, potential routes of escape from treatment via ERBB2/3 signalling were observed. We hypothesised that combined targeting of three cellular nodes (ER, ERBB, and mTORC1) may provide enhanced long-term clinical utility. METHODS: A panel of ER+ BC cell lines adapted to long-term oestrogen deprivation (LTED) and expressing ESR1 wt or ESR1 Y537S , modelling acquired resistance to an aromatase-inhibitor (AI), were treated in vitro with a combination of RAD001 and neratinib (pan-ERBB inhibitor) in the presence or absence of oestradiol (E2), tamoxifen (4-OHT), or fulvestrant (ICI182780). End points included proliferation, cell signalling, cell cycle, and effect on ER-mediated transactivation. An in-vivo model of AI resistance was treated with monotherapies and combinations to assess the efficacy in delaying tumour progression. RNA-seq analysis was performed to identify changes in global gene expression as a result of the indicated therapies. RESULTS: Here, we show RAD001 and neratinib (pan-ERBB inhibitor) caused a concentration-dependent decrease in proliferation, irrespective of the ESR1 mutation status. The combination of either agent with endocrine therapy further reduced proliferation but the maximum effect was observed with a triple combination of RAD001, neratinib, and endocrine therapy. In the absence of oestrogen, RAD001 caused a reduction in ER-mediated transcription in the majority of the cell lines, which associated with a decrease in recruitment of ER to an oestrogen-response element on the TFF1 promoter. Contrastingly, neratinib increased both ER-mediated transactivation and ER recruitment, an effect reduced by the addition of RAD001. In-vivo analysis of an LTED model showed the triple combination of RAD001, neratinib, and fulvestrant was most effective at reducing tumour volume. Gene set enrichment analysis revealed that the addition of neratinib negated the epidermal growth factor (EGF)/EGF receptor feedback loops associated with RAD001. CONCLUSIONS: Our data support the combination of therapies targeting ERBB2/3 and mTORC1 signalling, together with fulvestrant, in patients who relapse on endocrine therapy and retain a functional ER.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Receptor alfa de Estrogênio/genética , Neoplasias Hormônio-Dependentes/tratamento farmacológico , Receptor ErbB-2/genética , Receptor ErbB-3/genética , Inibidores da Aromatase/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Fator de Crescimento Epidérmico/antagonistas & inibidores , Fator de Crescimento Epidérmico/genética , Estradiol/farmacologia , Estrogênios/metabolismo , Everolimo/farmacologia , Feminino , Fulvestranto/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Neoplasias Hormônio-Dependentes/genética , Neoplasias Hormônio-Dependentes/patologia , Quinolinas/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-3/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Tamoxifeno/farmacologia
3.
Nat Commun ; 8(1): 1865, 2017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29192207

RESUMO

Resistance to endocrine therapy remains a major clinical problem in breast cancer. Genetic studies highlight the potential role of estrogen receptor-α (ESR1) mutations, which show increased prevalence in the metastatic, endocrine-resistant setting. No naturally occurring ESR1 mutations have been reported in in vitro models of BC either before or after the acquisition of endocrine resistance making functional consequences difficult to study. We report the first discovery of naturally occurring ESR1 Y537C and ESR1 Y537S mutations in MCF7 and SUM44 ESR1-positive cell lines after acquisition of resistance to long-term-estrogen-deprivation (LTED) and subsequent resistance to fulvestrant (ICIR). Mutations were enriched with time, impacted on ESR1 binding to the genome and altered the ESR1 interactome. The results highlight the importance and functional consequence of these mutations and provide an important resource for studying endocrine resistance.


Assuntos
Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , Estradiol/análogos & derivados , Antagonistas do Receptor de Estrogênio/uso terapêutico , Receptor alfa de Estrogênio/genética , Linhagem Celular Tumoral , Estradiol/uso terapêutico , Feminino , Fulvestranto , Humanos , Células MCF-7 , Mutação , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Tamoxifeno/uso terapêutico
4.
Breast Cancer Res ; 14(5): R132, 2012 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-23075476

RESUMO

INTRODUCTION: Strategies to improve the efficacy of endocrine agents in breast cancer (BC) therapy and to delay the onset of resistance include concomitant targeting of the estrogen receptor alpha (ER) and the mammalian target of rapamycin complex 1 (mTORC1), which regulate cell-cycle progression and are supported by recent clinical results. METHODS: BC cell lines expressing aromatase (AROM) and modeling endocrine-sensitive (MCF7-AROM1) and human epidermal growth factor receptor 2 (HER2)-dependent de novo resistant disease (BT474-AROM3) and long-term estrogen-deprived (LTED) MCF7 cells that had acquired resistance associated with HER2 overexpression were treated in vitro and as subcutaneous xenografts with everolimus (RAD001-mTORC1 inhibitor), in combination with tamoxifen or letrozole. End points included proliferation, cell-cycle arrest, cell signaling, and effects on ER-mediated transactivation. RESULTS: Everolimus caused a concentration-dependent decrease in proliferation in all cell lines, which was associated with reductions in S6 phosphorylation. Everolimus plus letrozole or tamoxifen enhanced the antiproliferative effect and G1-accumulation compared with monotherapy, as well as increased phosphorylation (Ser10) and nuclear accumulation of p27 and pronounced dephosphorylation of Rb. Sensitivity was greatest to everolimus in the LTED cells but was reduced by added estrogen. Increased pAKT occurred in all circumstances with everolimus and, in the BT474 and LTED cells, was associated with increased pHER3. Decreased ER transactivation suggested that the effectiveness of everolimus might be partly related to interrupting cross-talk between growth-factor signaling and ER. In MCF7-AROM1 xenografts, letrozole plus everolimus showed a trend toward enhanced tumor regression, versus the single agents. In BT474-AROM3 xenografts, everolimus alone was equally effective at reducing tumor volume as were the combination therapies. CONCLUSIONS: The results provide mechanistic support for recent positive clinical data on the combination of everolimus and endocrine therapy, as well as data on potential routes of escape via enhanced HER2/3 signaling. This merits investigation for further improvements in treatment efficacy.


Assuntos
Antineoplásicos Hormonais/farmacologia , Nitrilas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Sirolimo/análogos & derivados , Tamoxifeno/farmacologia , Triazóis/farmacologia , Animais , Antineoplásicos Hormonais/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Nucléolo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Everolimo , Feminino , Humanos , Letrozol , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/metabolismo , Nitrilas/administração & dosagem , Fosforilação , Inibidores de Proteínas Quinases/administração & dosagem , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-3/metabolismo , Receptores de Estrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/administração & dosagem , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Tamoxifeno/administração & dosagem , Triazóis/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...