Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Microbiol ; 265: 109334, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35033769

RESUMO

Mycoplasma ovipneumoniae (M. ovipneumoniae) is a respiratory pathogen associated with mild to moderate respiratory disease in domestic lambs and severe pneumonia outbreaks in wild ruminants such as bighorn sheep. However, whether M. ovipneumoniae by itself causes clinical respiratory disease in domestic sheep in the absence of secondary bacterial pathogens is still unclear. The goal of our study was to better understand the role of M. ovipneumoniae as a respiratory pathogen in domestic sheep and to explore potential antibiotic treatment approaches. Therefore, we inoculated four 4-month-old, specific-pathogen-free lambs with fresh nasal wash fluids from M. ovipneumoniae-infected sheep. The lambs were monitored for M. ovipneumoniae colonization, M. ovipneumoniae-specific antibodies, clinical signs, and cellular and molecular correlates of lung inflammation for eight weeks. All lambs then were treated with gamithromycin and observed for an additional four weeks. M. ovipneumoniae inoculation resulted in stable colonization of the upper respiratory tract in all M. ovipneumoniae-inoculated, but in none of the four mock-infected control lambs. All M. ovipneumoniae-infected lambs developed a robust antibody response to M. ovipneumoniae within 2 weeks. However, we did not observe significant signs of respiratory disease, evidence of lung damage or inflammation in any of the infected lambs. Interestingly, treatment with gamithromycin, which blocked growth of the M. ovipneumoniae in vitro, failed to reduce M. ovipneumoniae colonization. These observations indicate that, in the absence of co-infections, M. ovipneumoniae caused asymptomatic colonization of the upper respiratory tract that was resistant to clearance by the host immune response and by gamithromycin treatment.


Assuntos
Mycoplasma ovipneumoniae , Doenças dos Ovinos , Carneiro da Montanha , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Assintomáticas , Ovinos , Doenças dos Ovinos/epidemiologia
2.
Lab Chip ; 21(10): 2050-2058, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33861296

RESUMO

Hydrogels are soft, water-based polymer gels that are increasingly used to fabricate free-standing fluidic devices for tissue and biological engineering applications. For many of these applications, pressurized liquid must be driven through the hydrogel device. To couple pressurized liquid to a hydrogel device, a common approach is to insert tubing into a hole in the gel; however, this usually results in leakage and expulsion of the tubing, and other options for coupling pressurized liquid to hydrogels remain limited. Here, we describe a simple coupling approach where microfluidic tubing is inserted into a plastic, 3D-printed bulb-shaped connector, which "pops" into a 3D-printed socket in the gel. By systematically varying the dimensions of the connector relative to those of the socket entrance, we find an optimal head-socket ratio that provides maximum resistance to leakage and expulsion. The resulting connection can withstand liquid pressures on the order of several kilopascals, three orders of magnitude greater than traditional, connector-free approaches. We also show that two-sided connectors can be used to link multiple hydrogels to one another to build complex, reconfigurable hydrogel systems from modular components. We demonstrate the potential usefulness of these connectors by established long-term nutrient flow through a 3D-printed hydrogel device containing bacteria. The simple coupling approach outlined here will enable a variety of applications in hydrogel fluidics.


Assuntos
Hidrogéis , Microfluídica , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...