Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 24(18): 2876-84, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23864711

RESUMO

Reactive oxygen species (ROS) consist of potentially toxic, partly reduced oxygen species and free radicals. After H(2)O(2) treatment, yeast cells significantly increase superoxide radical production. Respiratory chain complex III and possibly cytochrome b function are essential for this increase. Disruption of complex III renders cells sensitive to H(2)O(2) but not to the superoxide radical generator menadione. Of interest, the same H(2)O(2)-sensitive mutant strains have the lowest superoxide radical levels, and strains with the highest resistance to H(2)O(2) have the highest levels of superoxide radicals. Consistent with this correlation, overexpression of superoxide dismutase increases sensitivity to H(2)O(2), and this phenotype is partially rescued by addition of small concentrations of menadione. Small increases in levels of mitochondrially produced superoxide radicals have a protective effect during H(2)O(2)-induced stress, and in response to H(2)O(2), the wild-type strain increases superoxide radical production to activate this defense mechanism. This provides a direct link between complex III as the main source of ROS and its role in defense against ROS. High levels of the superoxide radical are still toxic. These opposing, concentration-dependent roles of the superoxide radical comprise a form of hormesis and show one ROS having a hormetic effect on the toxicity of another.


Assuntos
Citoproteção/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Saccharomyces cerevisiae/citologia , Estresse Fisiológico/efeitos dos fármacos , Superóxidos/farmacologia , Adaptação Fisiológica/efeitos dos fármacos , Citocromos b/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mutação/genética , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
2.
Free Radic Biol Med ; 44(6): 1131-45, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18206664

RESUMO

A total of 286 H2O2-sensitive Saccharomyces cerevisiae deletion mutants were screened to identify genes involved in cellular adaptation to H2O2 stress. YAP1, SKN7, GAL11, RPE1, TKL1, IDP1, SLA1, and PET8 were important for adaptation to H2O2. The mutants were divisible into two groups based on their responses to a brief acute dose of H2O2 and to chronic exposure to H2O2. Transcription factors Yap1p, Skn7p, and Gal11p were important for both acute and chronic responses to H2O2. Yap1p and Skn7p were acting in concert for adaptation, which indicates that upregulation of antioxidant functions rather than generation of NADPH or glutathione is important for adaptation. Deletion of GPX3 and YBP1 involved in sensing H2O2 and activating Yap1p affected adaptation but to a lesser extent than YAP1 deletion. NADPH generation was also required for adaptation. RPE1, TKL1, or IDP1 deletants affected in NADPH production were chronically sensitive to H2O2 but resistant to an acute dose, and other mutants affected in NADPH generation tested were similarly affected in adaptation. These mutants overproduced reduced glutathione (GSH) but maintained normal cellular redox homeostasis. This overproduction of GSH was not regulated at transcription of the gene encoding gamma-glutamylcysteine synthetase.


Assuntos
Adaptação Fisiológica/genética , Proteínas de Ligação a DNA/metabolismo , Peróxido de Hidrogênio/toxicidade , NADP/metabolismo , Oxidantes/toxicidade , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Fatores de Transcrição/metabolismo , Expressão Gênica , Regulação Fúngica da Expressão Gênica , Estresse Oxidativo/fisiologia
3.
FEMS Yeast Res ; 8(3): 386-99, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18205808

RESUMO

Cells treated with low doses of linoleic acid hydroperoxide (LoaOOH) exhibit a cell-cycle delay that may provide a mechanism to overcome oxidative stress. Strains sensitive to LoaOOH from the genome-wide deletion collection were screened to identify deletants in which the cell-cycle delay phenotype was reduced. Forty-seven deletants were identified that were unable to mount the normal delay response, implicating the product of the deleted gene in the oxidant-mediated cell-cycle delay of the wild-type. Of these genes, SWI6 was of particular interest due to its role in cell-cycle progression through Start. The swi6 deletant strain was delayed on entry into the cell cycle in the absence of an oxidant, and oxidant addition caused no further delay. Transforming the swi6 deletant with SWI6 on a plasmid restored the G1 arrest in response to LoaOOH, indicating that Swi6p is involved in oxidant sensing leading to cell division delay. Micro-array studies identified genes whose expression in response to LoaOOH depended on SWI6. The screening identified 77 genes that were upregulated in the wild-type strain and concurrently downregulated in the swi6 deletant treated with LoaOOH. These data show that functions such as heat shock response, and glucose transport are involved in the response.


Assuntos
Ciclo Celular/efeitos dos fármacos , Ácidos Linoleicos/farmacologia , Peróxidos Lipídicos/farmacologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/citologia , Fatores de Transcrição/fisiologia , Glicólise , Estresse Oxidativo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Transcrição Gênica
4.
Proc Natl Acad Sci U S A ; 101(17): 6564-9, 2004 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-15087496

RESUMO

The complete set of viable deletion strains in Saccharomyces cerevisiae was screened for sensitivity of mutants to five oxidants to identify cell functions involved in resistance to oxidative stress. This screen identified a unique set of mainly constitutive functions providing the first line of defense against a particular oxidant; these functions are very dependent on the nature of the oxidant. Most of these functions are distinct from those involved in repair and recovery from damage, which are generally induced in response to stress, because there was little correlation between mutant sensitivity and the reported transcriptional response to oxidants of the relevant gene. The screen identified 456 mutants sensitive to at least one of five different types of oxidant, and these were ranked in order of sensitivity. Many genes identified were not previously known to have a role in resistance to reactive oxygen species. These encode functions including protein sorting, ergosterol metabolism, autophagy, and vacuolar acidification. Only two mutants were sensitive to all oxidants examined, only 12 were sensitive to at least four, and different oxidants had very different spectra of deletants that were sensitive. These findings highlight the specificity of cellular responses to different oxidants: No single oxidant is representative of general oxidative stress. Mitochondrial respiratory functions were overrepresented in mutants sensitive to H(2)O(2), and vacuolar protein-sorting mutants were enriched in mutants sensitive to diamide. Core functions required for a broad range of oxidative-stress resistance include transcription, protein trafficking, and vacuolar function.


Assuntos
Estresse Oxidativo/genética , Espécies Reativas de Oxigênio , Metabolismo dos Carboidratos , Regulação da Expressão Gênica , Genes Fúngicos , Peróxido de Hidrogênio/farmacologia , Via de Pentose Fosfato , Saccharomyces cerevisiae/genética , Transcrição Gênica
5.
Yeast ; 19(3): 203-14, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11816028

RESUMO

Ascertaining the impact of inhibitors on the growth phenotype of yeast mutants can be useful in elucidating the function of genes within the cell. Microtitre plates and robotics have been used to screen over 600 deletions from EUROSCARF, constructed in an FY1679 strain background, for sensitivity to various oxidants. These included the inorganic hydroperoxide, H(2)O(2), an organic peroxide (cumene hydroperoxide) and a lipid hydroperoxide (linoleic acid hydroperoxide). These produce within the cell several different reactive oxygen species that can cause damage to DNA, proteins and lipids. Approximately 14% of deletants displayed sensitivity to at least one of the oxidants and there was also a distribution of deletants that showed sensitivity to all or different combinations of the oxidants. Deletants included genes encoding proteins involved in stress responses, heavy metal homeostasis and putative cell wall proteins. Although global mechanisms have been identified that provide general stress responses, these results imply that there are also distinct mechanisms involved in the protection of the cell against specific damage caused by different oxidants. Further analysis of these genes may reveal unknown mechanisms protecting the cell against reactive oxygen species.


Assuntos
Deleção de Genes , Oxidantes/farmacologia , Estresse Oxidativo/genética , Peróxidos/farmacologia , Saccharomyces cerevisiae/genética , Derivados de Benzeno/farmacologia , Peróxido de Hidrogênio/farmacologia , Peróxidos Lipídicos/farmacologia , Estresse Oxidativo/fisiologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...