Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
ASAIO J ; 69(12): 1090-1098, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37774695

RESUMO

To address the unmet clinical need for pediatric circulatory support, we are developing an operationally versatile, hybrid, continuous-flow, total artificial heart ("Dragon Heart"). This device integrates a magnetically levitated axial and centrifugal blood pump. Here, we utilized a validated axial flow pump, and we focused on the development of the centrifugal pump. A motor was integrated to drive the centrifugal pump, achieving 50% size reduction. The motor design was simulated by finite element analysis, and pump design improvement was attained by computational fluid dynamics. A prototype centrifugal pump was constructed from biocompatible 3D printed parts for the housing and machined metal parts for the drive system. Centrifugal prototype testing was conducted using water and then bovine blood. The fully combined device ( i.e. , axial pump nested inside of the centrifugal pump) was tested to ensure proper operation. We demonstrated the hydraulic performance of the two pumps operating in tandem, and we found that the centrifugal blood pump performance was not adversely impacted by the simultaneous operation of the axial blood pump. The current iteration of this design achieved a range of operation overlapping our target range. Future design iterations will further reduce size and incorporate complete and active magnetic levitation.


Assuntos
Insuficiência Cardíaca , Coração Artificial , Coração Auxiliar , Humanos , Criança , Animais , Bovinos , Desenho de Prótese , Hidrodinâmica , Desenho de Equipamento
2.
Artif Organs ; 47(10): 1567-1580, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37602714

RESUMO

BACKGROUND: Mechanical circulatory support (MCS), including ventricular assist devices (VADs), have emerged as promising therapeutic alternatives for end-stage congestive heart failure (CHF). The latest generation of these devices are continuous flow (CF) blood pumps. While there have been demonstrated benefits to patient outcomes due to CF-MCS, there continue to be significant clinical challenges. Research to-date has concentrated on mitigating thromboembolic risk (stroke), while the downstream impact of CF-MCS on the cerebrospinal fluid (CSF) flow has not been well investigated. Disturbances in the CSF pressure and flow patterns are known to be associated with neurologic impairment and diseased states. Thus, here we seek to develop an understanding of the pathophysiologic consequences of CF-MCS on CSF dynamics. METHODS: We built and validated a computational framework using lumped parameter modeling of cardiovascular, cerebrovascular physics, CSF dynamics, and autoregulation. A sensitivity analysis was performed to confirm robustness of the modeling framework. Then, we characterized the impact of CF-MCS on the CSF and investigated cardiovascular conditions of healthy and end-stage heart failure. RESULTS: Modeling results demonstrated appropriate hemodynamics and indicated that CSF pressure depends on blood flow pulsatility more than CSF flow. An acute equilibrium between CSF production and absorption was observed in the CF-MCS case, characterized by CSF pressure remaining elevated, and CSF flow rates remaining below healthy, but higher than CHF states. CONCLUSION: This research has advanced our understanding of the impact of CF-MCS on CSF dynamics and cerebral hemodynamics.


Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , Coração Auxiliar , Humanos , Hemodinâmica/fisiologia , Coração Auxiliar/efeitos adversos , Homeostase , Coração , Insuficiência Cardíaca/terapia
3.
Artif Organs ; 47(4): 680-694, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36524792

RESUMO

BACKGROUND: The purpose of this research is to address ongoing device shortfalls for pediatric patients by developing a novel pediatric hybrid total artificial heart (TAH). The valveless magnetically-levitated MCS device (Dragon Heart) has only two moving parts, integrates an axial and centrifugal blood pump into a single device, and will occupy a compact footprint within the chest for the pediatric patient population. METHODS: Prior work on the Dragon Heart focused on the development of pump designs to achieve hemodynamic requirements. The impeller of these pumps was shaft-driven and thus could not be integrated for testing. The presented research leverages an existing magnetically levitated axial flow pump and focuses on centrifugal pump development. Using the axial pump diameter as a geometric constraint, a shaftless, magnetically supported centrifugal pump was designed for placement circumferentially around the axial pump domain. The new design process included the computational analysis of more than 50 potential centrifugal impeller geometries. The resulting centrifugal pump designs were prototyped and tested for levitation and no-load rotation, followed by in vitro testing using a blood analog. To meet physiologic demands, target performance goals were pressure rises exceeding 90 mm Hg for flow rates of 1-5 L/min with operating speeds of less than 5000 RPM. RESULTS: Three puck-shaped, channel impellers for the centrifugal blood pump were selected based on achieving performance and space requirements for magnetic integration. A quasi-steady flow analysis revealed that the impeller rotational position led to a pulsatile component in the pressure generation. After prototyping, the centrifugal prototypes (3, 4, and 5 channeled designs) demonstrated levitation and no-load rotation. Hydraulic experiments established pressure generation capabilities beyond target requirements. The pressure-flow performance of the prototypes followed expected trends with a dependence on rotational speed. Pulsatile blood flow was observed without pump-speed modulation due to rotating channel passage frequency. CONCLUSION: The results are promising in the advancement of this pediatric TAH. The channeled impeller design creates pressure-flow curves that are decoupled from the flow rate, a benefit that could reduce the required controller inputs and improve treatment of hypertensive patients.


Assuntos
Coração Artificial , Coração Auxiliar , Criança , Humanos , Imãs , Desenho de Prótese , Fluxo Pulsátil , Magnetismo , Desenho de Equipamento
4.
J Card Surg ; 37(12): 5172-5186, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36403254

RESUMO

There continues to be an unmet therapeutic need for an alternative treatment strategy for respiratory distress and lung disease. We are developing a portable cardiopulmonary support system that integrates an implantable oxygenator with a hybrid, dual-support, continuous-flow total artificial heart (TAH). The TAH has a centrifugal flow pump that is rotating about an axial flow pump. By attaching the hollow fiber bundle of the oxygenator to the base of the TAH, we establish a new cardiopulmonary support technology that permits a patient to be ambulatory during usage. In this study, we investigated the design and improvement of the blood flow pathway from the inflow-to-outflow of four oxygenators using a mathematical model and computational fluid dynamics (CFD). Pressure loss and gas transport through diffusion were examined to assess oxygenator design. The oxygenator designs led to a resistance-driven pressure loss range of less than 35 mmHg for flow rates of 1-7 L/min. All of the designs met requirements. The configuration having an outside-to-inside blood flow direction was found to have higher oxygen transport. Based on this advantageous flow direction, two designs (Model 1 and 3) were then integrated with the axial-flow impeller of the TAH for simulation. Flow rates of 1-7 L/min and speeds of 10,000-16,000 RPM were analyzed. Blood damage studies were performed, and Model 1 demonstrated the lowest potential for hemolysis. Future work will focus on developing and testing a physical prototype for integration into the new cardiopulmonary assist system.


Assuntos
Coração Artificial , Oxigenadores , Humanos , Desenho de Equipamento , Hemodinâmica
5.
Front Cardiovasc Med ; 9: 886874, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990958

RESUMO

Clinically-available blood pumps and total artificial hearts for pediatric patients continue to lag well behind those developed for adults. We are developing a hybrid, continuous-flow, magnetically levitated, pediatric total artificial heart (TAH). The hybrid TAH design integrates both an axial and centrifugal blood pump within a single, compact housing. The centrifugal pump rotates around the separate axial pump domain, and both impellers rotate around a common central axis. Here, we concentrate our development effort on the centrifugal blood pump by performing computational fluid dynamics (CFD) analysis of the blood flow through the pump. We also conducted transient CFD analyses (quasi-steady and transient rotational sliding interfaces) to assess the pump's dynamic performance conditions. Through modeling, we estimated the pressure generation, scalar stress levels, and fluid forces exerted on the magnetically levitated impellers. To further the development of the centrifugal pump, we also built magnetically-supported prototypes and tested these in an in vitro hydraulic flow loop and via 4-h blood bag hemolytic studies (n = 6) using bovine blood. The magnetically levitated centrifugal prototype delivered 0-6.75 L/min at 0-182 mmHg for 2,750-4,250 RPM. Computations predicted lower pressure-flow performance results than measured by testing; axial and radial fluid forces were found to be <3 N, and mechanical power usage was predicted to be <5 Watts. Blood damage indices (power law weighted exposure time and scalar stress) were <2%. All data trends followed expectations for the centrifugal pump design. Six peaks in the pressure rise were observed in the quasi-steady and transient simulations, correlating to the blade passage frequency of the 6-bladed impeller. The average N.I.H value (n = 6) was determined to be 0.09 ± 0.02 g/100 L, which is higher than desired and must be addressed through design improvement. These data serve as a strong foundation to build upon in the next development phase, whereby we will integrate the axial flow pump component.

6.
J Card Surg ; 37(10): 2988-2990, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35842815

RESUMO

Cervantes-Salazar and colleagues report the long-term surgical outcomes of 414 patients with total anomalous pulmonary venous connection (TAPVC) from January 2003 to June 2019. With an overall survival rate of 87.2% from 2003 to 2019, the authors found that an increased mortality risk was associated with infracardiac TAPVC, pulmonary venous obstruction, and postoperative mechanical ventilation. Their comprehensive study with a large sample size of varying age groups, and patients with late referrals for surgery, provide valuable insight into TAPVC surgical outcomes. Improved survival for these patients continues to be a major goal of clinical teams striving to transform treatment paradigms. The promising result of the study reported by Cervantes-Salazar and colleagues gives our field hope for a better future for these patients.


Assuntos
Veias Pulmonares , Pneumopatia Veno-Oclusiva , Síndrome de Cimitarra , Criança , Humanos , Lactente , Período Pós-Operatório , Circulação Pulmonar , Veias Pulmonares/anormalidades , Veias Pulmonares/cirurgia , Pneumopatia Veno-Oclusiva/cirurgia , Estudos Retrospectivos , Síndrome de Cimitarra/cirurgia
7.
Artif Organs ; 46(8): 1475-1490, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35357020

RESUMO

BACKGROUND: Mechanical circulatory support (MCS) devices, such as ventricular assist devices (VADs) and total artificial hearts (TAHs), have become a vital therapeutic option in the treatment of end-stage heart failure for adult patients. Such therapeutic options continue to be limited for pediatric patients. Clinicians initially adapted or scaled existing adult devices for pediatric patients; however, these adult devices are not designed to support the anatomical structure and varying flow capacities required for this population and are generally operated "off-design," which risks complications such as hemolysis and thrombosis. Devices designed specifically for the pediatric population which seek to address these shortcomings are now emerging and gaining FDA approval. METHODS: To analyze the competitive landscape of pediatric MCS devices, we conducted a systematic literature review. Approximately 27 devices were studied in detail: 8 were established or previously approved designs, and 19 were under development (11 VADs, 5 Fontan assist devices, and 3 TAHs). RESULTS: Despite significant progress, there is still no pediatric pump technology that satisfies the unique and distinct design constraints and requirements to support pediatric patients, including the wide range of patient sizes, increased cardiovascular demand with growth, and anatomic and physiologic heterogeneity of congenital heart disease. CONCLUSIONS: Forward-thinking design solutions are required to overcome these challenges and to ensure the translation of new therapeutic MCS devices for pediatric patients.


Assuntos
Oxigenação por Membrana Extracorpórea , Insuficiência Cardíaca , Coração Artificial , Coração Auxiliar , Criança , Insuficiência Cardíaca/cirurgia , Coração Artificial/efeitos adversos , Coração Auxiliar/efeitos adversos , Humanos , Tecnologia
8.
Lab Chip ; 22(3): 605-620, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34988560

RESUMO

Fluid flow is an integral part of microfluidic and organ-on-chip technology, ideally providing biomimetic fluid, cell, and nutrient exchange as well as physiological or pathological shear stress. Currently, many of the pumps that actively perfuse fluid at biomimetic flow rates are incompatible with use inside cell culture incubators, require many tubing connections, or are too large to run many devices in a confined space. To address these issues, we developed a user-friendly impeller pump that uses a 3D-printed device and impeller to recirculate fluid and cells on-chip. Impeller rotation was driven by a rotating magnetic field generated by magnets mounted on a computer fan; this pump platform required no tubing connections and could accommodate up to 36 devices at once in a standard cell culture incubator. A computational model was used to predict shear stress, velocity, and changes in pressure throughout the device. The impeller pump generated biomimetic fluid velocities (50-6400 µm s-1) controllable by tuning channel and inlet dimensions and the rotational speed of the impeller, which were comparable to the order of magnitude of the velocities predicted by the computational model. Predicted shear stress was in the physiological range throughout the microchannel and over the majority of the impeller. The impeller pump successfully recirculated primary murine splenocytes for 1 h and Jurkat T cells for 24 h with no impact on cell viability, showing the impeller pump's feasibility for white blood cell recirculation on-chip. In the future, we envision that this pump will be integrated into single- or multi-tissue platforms to study communication between organs.


Assuntos
Coração Auxiliar , Animais , Desenho de Equipamento , Camundongos , Rotação , Estresse Mecânico
9.
Artif Organs ; 45(6): 537-541, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33998682

RESUMO

Neonates, infants, and children have unique physiology and body surface areas that dramatically change during growth and development, and the substantial diversity of complicated pediatric illnesses and rare childhood diseases are distinct from the adult sphere. Unfortunately, medical innovation is generally constrained to retrofitting adult treatment strategies for this heterogeneous population. This conventional, but limited, approach ignores the dynamic biopsychosocial, growth, and developmental complexities that abound, as one progresses through this life cycle from newborn onward toward early adulthood. Forward-thinking solutions are essential to advance the state-of-the-art to address the challenges and unmet clinical needs that are uniquely presented by the pediatric population, and it has become obvious that newly trained engineers are essential for success. These unmet clinical needs and the necessity of new technical skills and expertise give rise to the emergence of an entirely new field of engineering and applied science: Pediatric Engineering. The field of Pediatric Engineering flips conventional wisdom that adult therapies can simply be scaled or successfully modified for children. It commandeers design to suit the specific needs of the child, while anticipating the dynamic growth and development into adulthood. We are growing a new pipeline of educated scientists and engineers who will have developed a unique toolbox of skills that they can use to tackle unmet clinical needs in global pediatric healthcare for years to come.


Assuntos
Órgãos Artificiais/tendências , Engenharia Biomédica/tendências , Difusão de Inovações , Pediatria/tendências , Humanos
11.
Ann Biomed Eng ; 49(3): 950-958, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33638028

RESUMO

The purpose of this article is to demonstrate how a new cross-community leadership team came together, collaborated, coordinated across academic units with external community partners, and executed a joint mission to address the unmet clinical need for medical face shields during these unprecedented times. Key aspects of this success include the ability to forge and leverage new opportunities, overcome challenges, adapt to changing constraints, and serve the significant need across the Philadelphia region and healthcare systems. We teamed to design-build durable face shields (AJFlex Shields). This was accomplished by high-volume manufacturing via injection molding and by 3-D printing the key headband component that supports the protective shield. Partnering with industry collaborators and civic-minded community allies proved to be essential to bolster production and deliver approximately 33,000 face shields to more than 100 organizations in the region. Our interdisciplinary team of engineers, clinicians, product designers, manufacturers, distributors, and dedicated volunteers is committed to continuing the design-build effort and providing Drexel AJFlex Shields to our communities.


Assuntos
COVID-19/prevenção & controle , Indústria Manufatureira , Equipamento de Proteção Individual/provisão & distribuição , Impressão Tridimensional , Universidades , Desenho de Equipamento , Humanos , Colaboração Intersetorial , Philadelphia
12.
Front Bioeng Biotechnol ; 9: 734310, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35096785

RESUMO

Despite advancements in procedures and patient care, mortality rates for neonatal recipients of the Norwood procedure, a palliation for single ventricle congenital malformations, remain high due to the use of a fixed-diameter blood shunt. In this study, a new geometrically tunable blood shunt was investigated to address limitations of the current treatment paradigm (e.g., Modified Blalock-Taussig Shunt) by allowing for controlled modulation of blood flow through the shunt to accommodate physiological changes due to the patient's growth. First, mathematical and computational cardiovascular models were established to investigate the hemodynamic requirements of growing neonatal patients with shunts and to inform design criteria for shunt diameter changes. Then, two stages of prototyping were performed to design, build and test responsive hydrogel systems that facilitate tuning of the shunt diameter by adjusting the hydrogel's degree of crosslinking. We examined two mechanisms to drive crosslinking: infusion of chemical crosslinking agents and near-UV photoinitiation. The growth model showed that 15-18% increases in shunt diameter were required to accommodate growing patients' increasing blood flow; similarly, the computational models demonstrated that blood flow magnitudes were in agreement with previous reports. These target levels of diameter increases were achieved experimentally with model hydrogel systems. We also verified that the photocrosslinkable hydrogel, composed of methacrylated dextran, was contact-nonhemolytic. These results demonstrate proof-of-concept feasibility and reflect the first steps in the development of this novel blood shunt. A tunable shunt design offers a new methodology to rebalance blood flow in this vulnerable patient population during growth and development.

13.
Artif Organs ; 44(8): E337-E347, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32216111

RESUMO

Limited donor organs and alternative therapies have led to a growing interest in the use of blood pumps as a treatment strategy for patients with single functional ventricle. The present study examines the use of collapsible and flexible impeller, cage, and diffuser designs of an axial blood pump for Fontan patients. Using one-way fluid-structure interaction (FSI) studies, the impact of blade deformation on blood damage and pump performance was investigated for flexible impellers. We evaluated biocompatible materials, including Nitinol, Bionate 80A polyurethane, and silicone for flow rates between 2.0-4.0 L/min and rotational speeds of 3000-9000 rpm. The level of deformation experienced by a cage and diffuser made of surgical stainless steel (control), Nitinol, and Bionate 80A polyurethane was also predicted using one-way FSI. The fluid pressure on the surface of the impeller, cage, and diffuser was determined using computational fluid dynamics (CFD), and then, the surface pressure was exported and used to investigate the impeller, cage, and diffuser deformation using finite element analysis. Finally, deformed impeller geometries were imported into the CFD software to determine the implication of deformation on pressure generation, blood damage index, and fluid streamlines. It was found that rotational speed, and not flow rate, is the largest determinant of impeller deformation, occurring at the blade trailing edges. The models predicted the maximum impeller deformation for Nitinol to be 40 nm, Bionate 80A polyurethane to be 106 µm, and silicone to be 2.8 mm, all occurring at 9000 rpm. The effects of silicone deformation on performance were significant, particularly at speeds above 5000 rpm where a decrease in pressure generation of more than 10% was observed. Despite this loss, the pressure generation at 5000 rpm exceeded the level required to alleviate Fontan complications. A blood damage estimation was performed and levels remained low. The effect of significant impeller deformation on blood damage was inconsistent and requires additional investigation. Cage and diffuser geometries made of steel and Nitinol deformed minimally but Bionate 80A experienced unacceptable levels of deformation, particularly in the free-flow case without a spinning impeller. These results support the continued evaluation of a flexible, pitch-adjusting, axial-flow, mechanical assist device as a clinical therapeutic option for patients with dysfunctional Fontan physiology.


Assuntos
Técnica de Fontan/instrumentação , Coração Auxiliar , Materiais Biocompatíveis , Humanos , Modelos Cardiovasculares , Desenho de Prótese
14.
Artif Organs ; 44(3): 231-238, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31494952

RESUMO

Pump-induced thrombosis continues to be a major complication of continuous-flow left ventricular assist devices (CF-LVADs), which increases the risks of thromboembolic stroke, peripheral thromboembolism, reduced pump flow, pump failure, cardiogenic shock, and death. This is confounded by the fact that there is currently no direct measure for a proper diagnosis during pump support. Given the severity of this complication and its required treatment, the ability to accurately differentiate CF-LVAD pump thrombosis from other complications is vital. Hemolysis measured by elevated lactate dehydrogenase (LDH) enzyme levels, when there is clinical suspicion of pump-induced thrombosis, is currently accepted as an important metric used by clinicians for diagnosis; however, LDH is a relatively nonspecific finding. LDH exists as five isoenzymes in the body, each with a unique tissue distribution. CF-LVAD pump thrombosis has been associated with elevated serum LDH-1 and LDH-2, as well as decreased LDH-4 and LDH-5. Herein, we review the various isoenzymes of LDH and their utility in differentiating hemolysis seen in CF-LVAD pump thrombosis from other physiologic and pathologic conditions as reported in the literature.


Assuntos
Coração Auxiliar/efeitos adversos , Hemólise , L-Lactato Desidrogenase/sangue , Trombose/sangue , Trombose/etiologia , Animais , Humanos , Isoenzimas/sangue , Trombose/patologia
15.
ASAIO J ; 65(2): 106-116, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29757759

RESUMO

The clinical implementation of mechanical circulatory assistance for a significantly dysfunctional or failing left ventricle as a bridge-to-transplant or bridge-to-recovery is on the rise. Thousands of patients with left-sided heart failure are readily benefitting from these life-saving technologies, and left ventricular failure often leads to severe right ventricular dysfunction or failure. Right ventricular failure (RVF) has a high rate of mortality caused by the risk of multisystem organ failure and prolonged hospitalization for patients after treatment. The use of a blood pump to support the left ventricle also typically results in an increase in right ventricular preload and may impair right ventricular contractility during left ventricular unloading. Patients with RVF might also suffer from severe pulmonary dysfunction, cardiac defects, congenital heart disease states, or a heterogeneity of cardiophysiologic challenges because of symptomatic congestive heart failure. Thus, the uniqueness and complexity of RVF is emerging as a new domain of significant clinical interest that motivates the development of right ventricular assist devices. In this review, we present the current state-of-the-art for clinically used blood pumps to support adults and pediatric patients with right ventricular dysfunction or failure concomitant with left ventricular failure. New innovative devices specifically for RVF are also highlighted. There continues to be a compelling need for novel treatment options to support patients with significant right heart dysfunction or failure.


Assuntos
Insuficiência Cardíaca/terapia , Coração Auxiliar , Disfunção Ventricular Direita/terapia , Adulto , Criança , Ventrículos do Coração/fisiopatologia , Humanos , Masculino
16.
Transl Pediatr ; 7(1): 14-22, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29441279

RESUMO

BACKGROUND: Limited therapeutic options are available for Fontan patients with dysfunctional or failing single ventricle physiology. This study describes the evaluation of an alternative, non-invasive, at-home therapeutic compression treatment for Fontan patients. Our hypothesis is that routinely administered, externally applied compression treatments to the lower extremities will augment systemic venous return, improve ventricular preload, and thus enhance cardiac output in Fontan patients. METHODS: To initially evaluate this hypothesis, we employed the NormaTec pneumatic compression device (PCD) in a pilot clinical study (n=2). This device is composed of inflatable trouser compartments that facilitate circumferentially and uniformly applied pressure to a patient's lower extremities. Following an initial health screening, test subjects were pre-evaluated with a modified-Bruce treadmill exercise stress test, and baseline data on cardiorespiratory health was collected. After training, test subjects conducted 6 days of external compression therapy at-home. Subjects were then re-evaluated with a final treadmill stress test and data acquisition of new cardiorespiratory parameters. RESULTS: Both subjects demonstrated improvement in exercise duration time, peak oxygen volume, and ventilator threshold, as compared to the baseline evaluation. CONCLUSIONS: These findings are promising and provide the foundation for future studies that will focus on increasing study participation (sample size) to better assess the clinical benefit of compression therapy for Fontan patients.

17.
Artif Organs ; 41(1): E1-E14, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27859378

RESUMO

The use of mechanical circulatory support (MCS) devices is a viable therapeutic treatment option for patients with congestive heart failure. Ventricular assist devices, cavopulmonary assist devices, and total artificial heart pumps continue to gain acceptance as viable treatment strategies for both adults and pediatric patients as bridge-to-transplant, bridge-to-recovery, and longer-term circulatory support alternatives. We present a review of the current and future MCS devices for patients having congenital heart disease (CHD) with biventricular or univentricular circulations. Several devices that are specifically designed for patients with complex CHD are in the development pipeline undergoing rigorous animal testing as readiness experiments in preparation for future clinical trials. These advances in the development of new blood pumps for patients with CHD will address a significant unmet clinical need, as well as generally improve innovation of the current state of the art in MCS technology.


Assuntos
Circulação Assistida , Oxigenação por Membrana Extracorpórea , Cardiopatias Congênitas/terapia , Coração Artificial , Animais , Circulação Assistida/instrumentação , Circulação Assistida/métodos , Criança , Desenho de Equipamento , Oxigenação por Membrana Extracorpórea/instrumentação , Oxigenação por Membrana Extracorpórea/métodos , Cardiopatias Congênitas/patologia , Cardiopatias Congênitas/cirurgia , Ventrículos do Coração/patologia , Ventrículos do Coração/cirurgia , Humanos , Pediatria/instrumentação , Pediatria/métodos , Função Ventricular
18.
Med Eng Phys ; 38(7): 622-632, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27129783

RESUMO

Mechanical circulatory support offers an alternative therapeutic treatment for patients with dysfunctional single ventricle physiology. An intravascular axial flow pump is being developed as a cavopulmonary assist device for these patients. This study details the development of a new rotating impeller geometry. We examined the performance of 8 impeller geometries with blade stagger or twist angles varying from 100° to 800° using computational methods. A refined range of blade twist angles between 300° and 400° was then identified, and 4 additional geometries were evaluated. Generally, the impeller designs produced 4-26mmHg for flow rates of 1-4L/min for 6000-8000 RPM. A data regression analysis was completed and found the impeller with 400° of blade twist to be the superior performer. A hydraulic test was conducted on a prototype of the 400° impeller, which generated measurable pressure rises of 7-28mmHg for flow rates of 1-4L/min at 6000-8000 RPM. The findings of the numerical model and experiment were in reasonable agreement within approximately 20%. These results support the continued development of an axial-flow, mechanical cavopulmonary assist device as a new clinical therapeutic option for Fontan patients.


Assuntos
Cardiopatias Congênitas/terapia , Coração Auxiliar , Fenômenos Mecânicos , Desenho de Prótese , Humanos
19.
Technol Health Care ; 24(5): 627-38, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27061388

RESUMO

Surgical optimization of the cavopulmonary connection and pharmacological therapy for dysfunctional Fontan physiology continue to advance, but these treatment approaches only slow the progression of decline to end-stage heart failure. The development of a mechanical cavopulmonary assist device will provide a viable therapeutic option in the bridging of patients to transplant or to stabilization. We hypothesize that rotational blood flow, delivered by an implantable axial flow blood pump, could effectively assist the venous circulation in Fontan patients by mimicking vortical blood flow patterns in the cardiovascular system. This study investigated seven new models of mechanical cavopulmonary assistance (single and dual-pump assist), created combinations of pump designs that deliver counter rotating vortical flow conditions, and analyzed pump performance, velocity streamlines, swirling strength, and energy augmentation in the cavopulmonary circuit for each support scenario. The model having an axial clockwise-oriented impeller in the inferior vena cava and an axial counterclockwise-oriented impeller rotating in the superior vena cava outperformed all of the support scenarios by enhancing the energy of the cavopulmonary circulation an average of 10.3% over the entire flow range and a maximum of 27.4% at %the higher flow rates. This research will guide the development of axial flow blood pumps for Fontan patients and demonstrated the high probability of %a cardiovascular benefit using counter rotating pumps in a dual support scenario, but found that this is dependent upon the patient-specific cavopulmonary anatomy.


Assuntos
Coração Auxiliar , Hemodinâmica , Desenho de Prótese/instrumentação
20.
Artif Organs ; 40(3): 233-42, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26333131

RESUMO

An intravascular axial flow pump is being developed as a mechanical cavopulmonary assist device for adolescent and adult patients with dysfunctional Fontan physiology. Coupling computational modeling with experimental evaluation of prototypic designs, this study examined the hydraulic performance of 11 impeller prototypes with blade stagger or twist angles varying from 100 to 600 degrees. A refined range of twisted blade angles between 300 and 400 degrees with 20-degree increments was then selected, and four additional geometries were constructed and hydraulically evaluated. The prototypes met performance expectations and produced 3-31 mm Hg for flow rates of 1-5 L/min for 6000-8000 rpm. A regression analysis was completed with all characteristic coefficients contributing significantly (P < 0.0001). This analysis revealed that the impeller with 400 degrees of blade twist outperformed the other designs. The findings of the numerical model for 300-degree twisted case and the experimental results deviated within approximately 20%. In an effort to simplify the impeller geometry, this work advanced the design of this intravascular cavopulmonary assist device closer to preclinical animal testing.


Assuntos
Técnica de Fontan/instrumentação , Coração Auxiliar , Adolescente , Adulto , Simulação por Computador , Cardiopatias Congênitas/cirurgia , Hemodinâmica , Humanos , Hidrodinâmica , Modelos Cardiovasculares , Pressão , Desenho de Prótese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA