Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Genet ; 94(2): 279-86, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26174675

RESUMO

Chickpea (Cicer arietinum L.) is the second most important cool season food legume cultivated in arid and semiarid regions of the world. The objective of the present study was to study variation for protein content in chickpea germplasm, and to find markers associated with it. A set of 187 genotypes comprising both international and exotic collections, and representing both desi and kabuli types with protein content ranging from 13.25% to 26.77% was used. Twenty-three SSR markers representing all eight linkage groups (LG) amplifying 153 loci were used for the analysis. Population structure analysis identified three subpopulations, and corresponding Q values of principal components were used to take care of population structure in the analysis which was performed using general linear and mixed linear models. Marker-trait association (MTA) analysis identified nine significant associations representing four QTLs in the entire population. Subpopulation analyses identified ten significant MTAs representing five QTLs, four of which were common with that of the entire population. Two most significant QTLs linked with markers TR26.205 and CaM1068.195 were present on LG3 and LG5. Gene ontology search identified 29 candidate genes in the region of significant MTAs on LG3. The present study will be helpful in concentrating on LG3 and LG5 for identification of closely linked markers for protein content in chickpea and for their use in molecular breeding programme for nutritional quality improvement.


Assuntos
Cicer/genética , Estudos de Associação Genética , Proteínas de Plantas/genética , Locos de Características Quantitativas/genética , Genes de Plantas , Marcadores Genéticos , Genótipo , Repetições de Microssatélites , Análise de Componente Principal
2.
Physiol Mol Biol Plants ; 19(3): 409-19, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24431509

RESUMO

Root system is a vital part of plants for absorbing soil moisture and nutrients and it influences the drought tolerance. Identification of the genomic regions harbouring quantitative trait loci (QTLs) for root and yield traits, and the linked markers can facilitate sorghum improvement through marker-assisted selection (MAS) besides the deeper understanding of the plant response to drought stress. A population of 184 recombinant inbred lines (RILs), derived from E36-1 × SPV570, along with parents were phenotyped for component traits of yield in field and root traits in an above ground rhizotron. High estimates of heritability and genetic advance for all the root traits and for most of the yield traits, presents high scope for improvement of these traits by simple selection. A linkage map constructed with 104 marker loci comprising 50 EST-SSRs, 34 non-genic nuclear SSRs and 20 SNPs, and QTL analysis was performed using composite interval mapping (CIM) approach. A total of eight and 20 QTLs were mapped for root and yield related traits respectively. The QTLs for root volume, root fresh weight and root dry weight were found co-localized on SBI-04, supported by a positive correlation among these traits. Hence, these traits can be improved using the same linked markers. The lack of overlap between the QTLs of component traits of root and yield suggested that these two sets of parameters are independent in their influence and the possibility of combining these two traits might enhance productivity of sorghum under receding moisture condition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA