Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pers Med ; 13(7)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37511785

RESUMO

Stability analysis remains a fundamental step in developing a successful imaging biomarker to personalize oncological strategies. This study proposes an in silico contour generation method for simulating segmentation variations to identify stable radiomic features. Ground-truth annotation provided for the whole prostate gland on the multi-parametric MRI sequences (T2w, ADC, and SUB-DCE) were perturbed to mimic segmentation differences observed among human annotators. In total, we generated 15 synthetic contours for a given image-segmentation pair. One thousand two hundred twenty-four unfiltered/filtered radiomic features were extracted applying Pyradiomics, followed by stability assessment using ICC(1,1). Stable features identified in the internal population were then compared with an external population to discover and report robust features. Finally, we also investigated the impact of a wide range of filtering strategies on the stability of features. The percentage of unfiltered (filtered) features that remained robust subjected to segmentation variations were T2w-36% (81%), ADC-36% (94%), and SUB-43% (93%). Our findings suggest that segmentation variations can significantly impact radiomic feature stability but can be mitigated by including pre-filtering strategies as part of the feature extraction pipeline.

2.
Br J Radiol ; 93(1108): 20190948, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32101448

RESUMO

Historically, medical imaging has been a qualitative or semi-quantitative modality. It is difficult to quantify what can be seen in an image, and to turn it into valuable predictive outcomes. As a result of advances in both computational hardware and machine learning algorithms, computers are making great strides in obtaining quantitative information from imaging and correlating it with outcomes. Radiomics, in its two forms "handcrafted and deep," is an emerging field that translates medical images into quantitative data to yield biological information and enable radiologic phenotypic profiling for diagnosis, theragnosis, decision support, and monitoring. Handcrafted radiomics is a multistage process in which features based on shape, pixel intensities, and texture are extracted from radiographs. Within this review, we describe the steps: starting with quantitative imaging data, how it can be extracted, how to correlate it with clinical and biological outcomes, resulting in models that can be used to make predictions, such as survival, or for detection and classification used in diagnostics. The application of deep learning, the second arm of radiomics, and its place in the radiomics workflow is discussed, along with its advantages and disadvantages. To better illustrate the technologies being used, we provide real-world clinical applications of radiomics in oncology, showcasing research on the applications of radiomics, as well as covering its limitations and its future direction.


Assuntos
Aprendizado Profundo/tendências , Diagnóstico por Imagem/tendências , Processamento de Imagem Assistida por Computador/tendências , Tecnologia Radiológica/tendências , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Diagnóstico por Imagem/métodos , Feminino , Previsões , Humanos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Masculino , Radiografia/métodos , Tecnologia Radiológica/métodos , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...