Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1337463, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38504887

RESUMO

Doubled haploid (DH) technology becomes more routinely applied in maize hybrid breeding. However, some issues in haploid induction and identification persist, requiring resolution to optimize DH production. Our objective was to implement simultaneous marker-assisted selection (MAS) for qhir1 (MTL/ZmPLA1/NLD) and qhir8 (ZmDMP) using TaqMan assay in F2 generation of four BHI306-derived tropical × temperate inducer families. We also aimed to assess their haploid induction rate (HIR) in the F3 generation as a phenotypic response to MAS. We highlighted remarkable increases in HIR of each inducer family. Genotypes carrying qhir1 and qhir8 exhibited 1 - 3-fold higher haploid frequency than those carrying only qhir1. Additionally, the qhir1 marker was employed for verifying putative haploid seedlings at 7 days after planting. Flow cytometric analysis served as the gold standard test to assess the accuracy of the R1-nj and the qhir1 marker. The qhir1 marker showed high accuracy and may be integrated in multiple haploid identifications at early seedling stage succeeding pre-haploid sorting via R1-nj marker.

2.
Front Plant Sci ; 13: 1008954, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340400

RESUMO

Drought stress in Southeast Asia greatly affects rice production, and the rice root system plays a substantial role in avoiding drought stress. In this study, we examined the phenotypic and genetic correlations among root anatomical, morphological, and agronomic phenotypes over multiple field seasons. A set of >200 rice accessions from Southeast Asia (a subset of the 3000 Rice Genomes Project) was characterized with the aim to identify root morphological and anatomical phenotypes related to productivity under drought stress. Drought stress resulted in slight increases in the basal metaxylem and stele diameter of nodal roots. Although few direct correlations between root phenotypes and grain yield were identified, biomass was consistently positively correlated with crown root number and negatively correlated with stele diameter. The accessions with highest grain yield were characterized by higher crown root numbers and median metaxylem diameter and smaller stele diameter. Genome-wide association study (GWAS) revealed 162 and 210 significant SNPs associated with root phenotypes in the two seasons which resulted in identification of 59 candidate genes related to root development. The gene OsRSL3 was found in a QTL region for median metaxylem diameter. Four SNPs in OsRSL3 were found that caused amino acid changes and significantly associated with the root phenotype. Based on the haplotype analysis for median metaxylem diameter, the rice accessions studied were classified into five allele combinations in order to identify the most favorable haplotypes. The candidate genes and favorable haplotypes provide information useful for the genetic improvement of root phenotypes under drought stress.

3.
Genes (Basel) ; 13(5)2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35627301

RESUMO

Magnaporthae oryzae (M. oryzae) is the most destructive disease of rice worldwide. In this study, one hundred and two isolates of M. oryzae were collected from rice (Oryzae sativa L.) from 2001 to 2017, and six rice varieties with resistance genes Pizt, Pish, Pik, Pib, and Pi2 were used in a genome-wide association study to identify pathogenicity loci in M. oryzae. Genome-wide association analysis was performed using 5338 single nucleotide polymorphism (SNPs) and phenotypic data of neck blast screening by TASSEL software together with haplotype block and SNP effect analysis. Twenty-seven significant SNPs were identified on chromosomes 1, 2, 3, 4, 5, 6, and 7. Many predicted genes (820 genes) were found in the target regions of six rice varieties. Most of these genes are described as putative uncharacterized proteins, however, some genes were reported related to virulence in M. oryzae. Moreover, this study revealed that R genes, Pik, Pish, and Pi2, were broad-spectrum resistant against neck blast disease caused by Thai blast isolate. Haplotype analysis revealed that the combination of the favorable alleles causing reduced virulence of isolates against IRBLz5-CA carrying Pi2 gene contributes 69% of the phenotypic variation in pathogenicity. The target regions and information are useful to develop marker-specific genes to classify blast fungal isolates and select appropriate resistance genes for rice cultivation and improvement.


Assuntos
Magnaporthe , Oryza , Ascomicetos , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Magnaporthe/genética , Oryza/genética , Oryza/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Virulência
4.
Front Plant Sci ; 13: 781153, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574109

RESUMO

Agricultural crop breeding programs, particularly at the national level, typically consist of a core panel of elite breeding cultivars alongside a number of local landrace varieties (or other endemic cultivars) that provide additional sources of phenotypic and genomic variation or contribute as experimental materials (e.g., in GWAS studies). Three issues commonly arise. First, focusing primarily on core development accessions may mean that the potential contributions of landraces or other secondary accessions may be overlooked. Second, elite cultivars may accumulate deleterious alleles away from nontarget loci due to the strong effects of artificial selection. Finally, a tendency to focus solely on SNP-based methods may cause incomplete or erroneous identification of functional variants. In practice, integration of local breeding programs with findings from global database projects may be challenging. First, local GWAS experiments may only indicate useful functional variants according to the diversity of the experimental panel, while other potentially useful loci-identifiable at a global level-may remain undiscovered. Second, large-scale experiments such as GWAS may prove prohibitively costly or logistically challenging for some agencies. Here, we present a fully automated bioinformatics pipeline (riceExplorer) that can easily integrate local breeding program sequence data with international database resources, without relying on any phenotypic experimental procedure. It identifies associated functional haplotypes that may prove more robust in determining the genotypic determinants of desirable crop phenotypes. In brief, riceExplorer evaluates a global crop database (IRRI 3000 Rice Genomes) to identify haplotypes that are associated with extreme phenotypic variation at the global level and recorded in the database. It then examines which potentially useful variants are present in the local crop panel, before distinguishing between those that are already incorporated into the elite breeding accessions and those only found among secondary varieties (e.g., landraces). Results highlight the effectiveness of our pipeline, identifying potentially useful functional haplotypes across the genome that are absent from elite cultivars and found among landraces and other secondary varieties in our breeding program. riceExplorer can automatically conduct a full genome analysis and produces annotated graphical output of chromosomal maps, potential global diversity sources, and summary tables.

5.
Plants (Basel) ; 12(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36616222

RESUMO

The impact of increasing drought periods on crop yields as a result of global climate change is a major concern in modern agriculture. Thus, a greater understanding of crop physiological responses under drought stress can guide breeders to develop new cultivars with enhanced drought tolerance. In this study, selected chromosome segment substitution lines of KDML105 (KDML105-CSSL) were grown in the Plant Phenomics Center of Kasetsart University in Thailand under well-watered and drought-stressed conditions. Physiological traits were measured by observing gas exchange dynamics and using a high-throughput phenotyping platform. Furthermore, because of its impact on plant internal gas and water regulation, stomatal morphological trait variation was recorded. The results show that KDML105-CSS lines exhibited plasticity responses to enhance water-use efficiency which increased by 3.62%. Moreover, photosynthesis, stomatal conductance and transpiration decreased by approximately 40% and plant height was reduced by 17.69%. Stomatal density tended to decrease and was negatively correlated with stomatal size, and stomata on different sides of the leaves responded differently under drought stress. Under drought stress, top-performing KDML105-CSS lines with high net photosynthesis had shorter plant height and improved IWUE, as influenced by an increase in stomatal density on the upper leaf side and a decrease on the lower leaf side.

6.
Plants (Basel) ; 10(6)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207135

RESUMO

Sweetness is an economically important eating quality trait for sweet-corn breeding. To investigate the genetic control of the sweetness trait, we conducted a genome-wide association study (GWAS) in an association panel consisting of 250 sweet corn and waxy corn inbred and recombinant inbred lines (RILs), together with the genotypes obtained from the high-density 600K maize genotyping single-nucleotide polymorphism (SNP) array. GWAS results identified 12 significantly associated SNPs on chromosomes 3, 4, 5, and 7. The most associated SNP, AX_91849634, was found on chromosome 3 with a highly significant p-value of ≤1.53 × 10-14. The candidate gene identified within the linkage disequilibrium (LD) of this marker was shrunken2 (Zm00001d044129; sh2), which encodes ADP-glucose pyrophosphorylase (AGPase), a 60 kDa subunit enzyme that affects starch metabolism in the maize endosperm. Several SNP markers specific to variants in sh2 were developed and validated. According to the validation in a set of 81 inbred, RIL, and popular corn varieties, marker Sh2_rs844805326, which was developed on the basis of the SNP at the position 154 of exon 1, was highly efficient in classifying sh2-based sweet corn from other types of corn. This functional marker is extremely useful for marker-assisted breeding in sh2-sweet corn improvement and marketable seed production.

7.
Plants (Basel) ; 10(3)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802191

RESUMO

Bacterial leaf blight (BLB) is a serious disease affecting global rice agriculture caused by Xanthomonas oryzae pv. oryzae (Xoo). Most resistant rice lines are dependent on single genes that are vulnerable to resistance breakdown caused by pathogen mutation. Here we describe a genome-wide association study of 222 predominantly Thai rice accessions assayed by phenotypic screening against 20 Xoo isolates. Loci corresponding to BLB resistance were detected using >142,000 SNPs. We identified 147 genes according to employed significance thresholds across chromosomes 1-6, 8, 9 and 11. Moreover, 127 of identified genes are located on chromosomal regions outside estimated Linkage Disequilibrium influences of known resistance genes, potentially indicating novel BLB resistance markers. However, significantly associated SNPs only occurred across a maximum of six Xoo isolates indicating that the development of broad-spectrum Xoo strain varieties may prove challenging. Analyses indicated a range of gene functions likely underpinning BLB resistance. In accordance with previous studies of accession panels focusing on indica varieties, our germplasm displays large numbers of SNPs associated with resistance. Despite encouraging data suggesting that many loci contribute to resistance, our findings corroborate previous inferences that multi-strain resistant varieties may not be easily realised in breeding programs without resorting to multi-locus strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA