Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sports Med ; 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38041768

RESUMO

BACKGROUND: Repeated-sprint training (RST) is a common training method for enhancing physical fitness in athletes. To advance RST prescription, it is important to understand the effects of programming variables on physical fitness and physiological adaptation. OBJECTIVES: This study (1) quantifies the pooled effects of running RST on changes in 10 and 20 m sprint time, maximal oxygen consumption (VO2max), Yo-Yo Intermittent Recovery Test Level 1 (YYIR1) distance, repeated-sprint ability (RSA), countermovement jump (CMJ) height and change of direction (COD) ability in athletes, and (2) examines the moderating effects of program duration, training frequency, weekly volume, sprint modality, repetition distance, number of repetitions per set and number of sets per session on changes in these outcome measures. METHODS: Pubmed, SPORTDiscus and Scopus databases were searched for original research articles up to 04 July 2023, investigating RST in healthy, able-bodied athletes, between 14 and 35 years of age, and a performance calibre of trained or above. RST interventions were limited to repeated, maximal running (land-based) sprints of ≤ 10 s duration, with ≤ 60 s recovery, performed for 2-12 weeks. A Downs and Black checklist was used to assess the methodological quality of the included studies. Eligible data were analysed using multi-level mixed-effects meta-analysis, with standardised mean changes determined for all outcomes. Standardised effects [Hedges G (G)] were evaluated based on coverage of their confidence (compatibility) intervals (CI) using a strength and conditioning specific reference value of G = 0.25 to declare an improvement (i.e. G > 0.25) or impairment (i.e. G < - 0.25) in outcome measures. Applying the same analysis, the effects of programming variables were then evaluated against a reference RST program, consisting of three sets of 6 × 30 m straight-line sprints performed twice per week for 6 weeks (1200 m weekly volume). RESULTS: 40 publications were included in our investigation, with data from 48 RST groups (541 athletes) and 19 active control groups (213 athletes). Across all studies, the effects of RST were compatible with improvements in VO2max (G 0.56, 90% CI 0.32-0.80), YYIR1 distance (G 0.61, 90% CI 0.43-0.79), RSA decrement (G - 0.61, 90% CI - 0.85 to - 0.37), linear sprint times (10 m: G - 0.35, 90% CI - 0.48 to - 0.22; 20 m: G - 0.48, 90% CI - 0.69 to - 0.27), RSA average time (G - 0.34, 90% CI - 0.49 to - 0.18), CMJ height (G 0.26, 90% CI 0.13-0.39) and COD ability (G - 0.32, 90% CI - 0.52 to - 0.12). Compared with the reference RST program, the effects of manipulating training frequency (+ 1 session per week), program duration (+ 1 extra training week), RST volume (+ 200 m per week), number of reps (+ 2 per set), number of sets per session (+ 1 set) or rep distance (+ 10 m per rep) were either non-substantial or comparable with an impairment in at least one outcome measure per programming variable. CONCLUSIONS: Running-based RST improves speed, intermittent running performance, VO2max, RSA, COD ability and CMJ height in trained athletes. Performing three sets of 6 × 30 m sprints, twice per week for 6 weeks is effective for enhancing physical fitness and physiological adaptation. Additionally, since our findings do not provide conclusive support for the manipulation of RST variables, further work is needed to better understand how programming factors can be manipulated to augment training-induced adaptations. STUDY REGISTRATION: Open Science Framework registration https://doi.org/10.17605/OSF.IO/RVNDW .

2.
Sports Med ; 53(8): 1609-1640, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37222864

RESUMO

BACKGROUND: Repeated-sprint training (RST) involves maximal-effort, short-duration sprints (≤ 10 s) interspersed with brief recovery periods (≤ 60 s). Knowledge about the acute demands of RST and the influence of programming variables has implications for training prescription. OBJECTIVES: To investigate the physiological, neuromuscular, perceptual and performance demands of RST, while also examining the moderating effects of programming variables (sprint modality, number of repetitions per set, sprint repetition distance, inter-repetition rest modality and inter-repetition rest duration) on these outcomes. METHODS: The databases Pubmed, SPORTDiscus, MEDLINE and Scopus were searched for original research articles investigating overground running RST in team sport athletes ≥ 16 years. Eligible data were analysed using multi-level mixed effects meta-analysis, with meta-regression performed on outcomes with ~ 50 samples (10 per moderator) to examine the influence of programming factors. Effects were evaluated based on coverage of their confidence (compatibility) limits (CL) against elected thresholds of practical importance. RESULTS: From 908 data samples nested within 176 studies eligible for meta-analysis, the pooled effects (± 90% CL) of RST were as follows: average heart rate (HRavg) of 163 ± 9 bpm, peak heart rate (HRpeak) of 182 ± 3 bpm, average oxygen consumption of 42.4 ± 10.1 mL·kg-1·min-1, end-set blood lactate concentration (B[La]) of 10.7 ± 0.6 mmol·L-1, deciMax session ratings of perceived exertion (sRPE) of 6.5 ± 0.5 au, average sprint time (Savg) of 5.57 ± 0.26 s, best sprint time (Sbest) of 5.52 ± 0.27 s and percentage sprint decrement (Sdec) of 5.0 ± 0.3%. When compared with a reference protocol of 6 × 30 m straight-line sprints with 20 s passive inter-repetition rest, shuttle-based sprints were associated with a substantial increase in repetition time (Savg: 1.42 ± 0.11 s, Sbest: 1.55 ± 0.13 s), whereas the effect on sRPE was trivial (0.6 ± 0.9 au). Performing two more repetitions per set had a trivial effect on HRpeak (0.8 ± 1.0 bpm), B[La] (0.3 ± 0.2 mmol·L-1), sRPE (0.2 ± 0.2 au), Savg (0.01 ± 0.03) and Sdec (0.4; ± 0.2%). Sprinting 10 m further per repetition was associated with a substantial increase in B[La] (2.7; ± 0.7 mmol·L-1) and Sdec (1.7 ± 0.4%), whereas the effect on sRPE was trivial (0.7 ± 0.6). Resting for 10 s longer between repetitions was associated with a substantial reduction in B[La] (-1.1 ± 0.5 mmol·L-1), Savg (-0.09 ± 0.06 s) and Sdec (-1.4 ± 0.4%), while the effects on HRpeak (-0.7 ± 1.8 bpm) and sRPE (-0.5 ± 0.5 au) were trivial. All other moderating effects were compatible with both trivial and substantial effects [i.e. equal coverage of the confidence interval (CI) across a trivial and a substantial region in only one direction], or inconclusive (i.e. the CI spanned across substantial and trivial regions in both positive and negative directions). CONCLUSIONS: The physiological, neuromuscular, perceptual and performance demands of RST are substantial, with some of these outcomes moderated by the manipulation of programming variables. To amplify physiological demands and performance decrement, longer sprint distances (> 30 m) and shorter, inter-repetition rest (≤ 20 s) are recommended. Alternatively, to mitigate fatigue and enhance acute sprint performance, shorter sprint distances (e.g. 15-25 m) with longer, passive inter-repetition rest (≥ 30 s) are recommended.


Assuntos
Desempenho Atlético , Corrida , Humanos , Esportes de Equipe , Corrida/fisiologia , Fadiga , Atletas , Ácido Láctico , Desempenho Atlético/fisiologia
3.
J Strength Cond Res ; 37(8): 1566-1572, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36727699

RESUMO

ABSTRACT: Weakley, J, Castilla, AP, Ramos, AG, Banyard, H, Thurlow, F, Edwards, T, Morrison, M, McMahon, E, and Owen, C. The effect of traditional, rest redistribution, and velocity-based prescription on repeated sprint training performance and responses in semi-professional athletes. J Strength Cond Res 37(8): 1566-1572, 2023-The aim of this study was to investigate the effects of traditional, rest redistribution, and velocity-based repeated sprint training methods on repeated sprint performance, perceived effort, heart rate, and changes in force-velocity-power (FVP) profiles in male semiprofessional athletes. In a randomized crossover design, a traditional (2 sets of 6 repetitions [TRAD]), 2 different rest redistribution (4 sets of 3 repetitions [RR4] and 12 sets of 1 repetition [RR12]), and a 5% velocity loss (VL5%) (12 repetitions, with sets terminated when a 5% reduction in mean velocity had occurred) condition were completed. Mean and peak velocity, mean heart rate, and differential ratings of perceived exertion (dRPE) were measured throughout each session, while horizontal FVP profiles were assessed presession and postsession. The RR4 and RR12 conditions allowed the greatest maintenance of velocity, while the RR4, RR12, and VL5% had a moderate , significantly greater mean heart rate than the traditional condition. Trivial , nonsignificant differences between all conditions were observed in dRPE of the legs and breathlessness and FVP profiles. These findings indicate that rest redistribution can allow for greater maintenance of sprint velocity and heart rate, without altering perceived effort during repeated sprint training. In addition, velocity-loss thresholds may be a feasible method of prescription if athletes have diverse physical qualities and reductions in sprint performance during repeated sprint training are undesirable. Practitioners should consider these outcomes when designing repeated sprint training sessions because the strategic use of these methods can alter sprint performance and internal load without changing perceptions of intensity.


Assuntos
Desempenho Atlético , Treinamento Resistido , Humanos , Masculino , Atletas , Desempenho Atlético/fisiologia , Força Muscular/fisiologia , Treinamento Resistido/métodos , Descanso , Estudos Cross-Over
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...