Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0303177, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38781182

RESUMO

Silk fibroin nanoparticles (FNP) have been increasingly investigated in biomedical fields due to their biocompatibility and biodegradability properties. To widen the FNP versatility and applications, and to control the drug release from the FNP, this study developed the Eudragit S100-functionalized FNP (ES100-FNP) as a pH-responsive drug delivery system, by two distinct methods of co-condensation and adsorption, employing the zwitterionic furosemide as a model drug. The particles were characterized by sizes and zeta potentials (DLS method), morphology (electron microscopy), drug entrapment efficiency and release profiles (UV-Vis spectroscopy), and chemical structures (FT-IR, XRD, and DSC). The ES100-FNP possessed nano-sizes of ∼200-350 nm, zeta potentials of ∼ -20 mV, silk-II structures, enhanced thermo-stability, non-cytotoxic to the erythrocytes, and drug entrapment efficiencies of 30%-60%, dependent on the formulation processes. Interestingly, the co-condensation method yielded the smooth spherical particles, whereas the adsorption method resulted in durian-shaped ones due to furosemide re-crystallization. The ES100-FNP adsorbed furosemide via physical adsorption, followed Langmuir model and pseudo-second-order kinetics. In the simulated oral condition, the particles could protect the drug in the stomach (pH 1.2), and gradually released the drug in the intestine (pH 6.8). Remarkably, in different pH conditions of 6.8, 9.5, and 12, the ES100-FNP could control the furosemide release rates depending on the formulation methods. The ES100-FNP made by the co-condensation method was mainly controlled by the swelling and corrosion process of ES100, and followed the Korsmeyer-Peppas non-Fickian transport mechanism. Whereas, the ES100-FNP made by the adsorption method showed constant release rates, followed the zero-order kinetics, due to the gradual furosemide dissolution in the media. Conclusively, the ES100-FNP demonstrated high versatility as a pH-responsive drug delivery system for biomedical applications.


Assuntos
Fibroínas , Furosemida , Nanopartículas , Fibroínas/química , Concentração de Íons de Hidrogênio , Nanopartículas/química , Furosemida/química , Sistemas de Liberação de Medicamentos , Ácidos Polimetacrílicos/química , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Tamanho da Partícula , Animais , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Clin Cosmet Investig Dermatol ; 16: 1109-1121, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37131540

RESUMO

Background: Wedelia trilobata L. (WT), a common herbal plant in Vietnam, is popularly used as a strong antioxidant in Vietnamese folk medicine. However, limited studies have reported the application of WT flower in cosmeceutical area. Purpose: This study explored the potentials of WT loaded fibroin microparticles (FMPs-WT) as a novel anti-aging cosmeceutical product. Methods: The WT flower was firstly extracted by maceration with methanol, ethanol 60%, and ethanol 96%, and its chemical compositions and total polyphenol content were investigated. Then, the FMPs-WT were developed by desolvation method and physicochemically characterized. Finally, the product antioxidant activities were in-vitro determined using DPPH assay. Results: The optimal WT extract was the ethanol 60% extract, which contains polyphenols, alkaloids, flavonoids, saponins, glycosides, and organic acids; with a total polyphenol content of 46.47 ± 2.32 mg GAE/g plant powder. The FMPs-WT were successfully formulated, with a distinct silk-II polymorph; varied sizes of 0.592 to 9.820 µm, depending on the fibroin concentrations and the WT extraction solvent; high entrapment efficiencies of >65%; and sustained-release patterns of polyphenol in pH 7.4 for >6 h. Regarding the antioxidant activity, the pure WT flower extracts possessed high scavenging actions with IC50 of 7.98 ± 0.40 µg/mL, comparable with the standard ascorbic acid (IC50 = 4.23 ± 0.21 µg/mL). Moreover, the FMPs-WT could retain the extract antioxidant capacity, and exert the effects in a timely manner, corresponding to its release profile. Conclusion: The FMPs-WT could be further investigated to become a potential anti-aging cosmeceutical product in the market.

3.
Sci Total Environ ; 844: 157066, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35787905

RESUMO

Vietnam is known as one of the high plastic consumption countries in Southeast Asia. This study initially determined characteristics of microplastics (MPs) including morphology, polymer type, and abundance at peatland areas in Mekong Delta in Vietnam. The MPs level was found with an average abundance of 192.3 ± 261.3 items kg-1. In details, those values at Thanh Hoa, Duc Hue, and Tan Thanh were observed at 57.0 ± 110.4 items kg-1, 7.0 ± 10.6 items kg-1, and 513.0 ± 186.9 items kg-1, respectively. The results indicated that MP particle contaminations in peatland sediments are significant among sampling sites (p < 0.001). Also, FT-IR analysis indicated that polyvinyl chloride is the primary polymer (46.2 %), followed by polyethylene (20.9 %), and polypropylene (9.2 %) in peatland samples and their composition varies in different regions significantly. The fragments (67.0 %) and films (24.6 %) were the most common shapes, followed by fibers (7.6 %) and foams (0.9 %). Small MPs with particle size (300-1000 µm) was the most abundant in sediment samples. Moreover, the most popular colors observed in peatland sediments were aqua (26.6 %), white (25.6 %), blue (25.4 %), and green (12.7 %). Our findings indicated that anthropogenic factors and environmental processes that caused the transformation/transportation and accumulation, leading to rising MP contaminant concerns in peatland areas in Mekong Delta in Vietnam, mainly in terms of the spatial distribution of MPs. In summary, this study provided an in-depth knowledge of microplastic pollution in peatland areas, which is crucial for the building sustainable development strategies in these areas.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Plásticos/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Vietnã , Poluentes Químicos da Água/análise
4.
Chemosphere ; 300: 134514, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35398076

RESUMO

Composting is a promising technology to decompose organic waste into humus-like high-quality compost, which can be used as organic fertilizer. However, greenhouse gases (N2O, CO2, CH4) and odorous emissions (H2S, NH3) are major concerns as secondary pollutants, which may pose adverse environmental and health effects. During the composting process, nitrogen cycle plays an important role to the compost quality. This review aimed to (1) summarizes the nitrogen cycle of the composting, (2) examine the operational parameters, microbial activities, functions of enzymes and genes affecting the nitrogen cycle, and (3) discuss mitigation strategies for nitrogen loss. Operational parameters such as moisture, oxygen content, temperature, C/N ratio and pH play an essential role in the nitrogen cycle, and adjusting them is the most straightforward method to reduce nitrogen loss. Also, nitrification and denitrification are the most crucial processes of the nitrogen cycle, which strongly affect microbial community dynamics. The ammonia-oxidizing bacteria or archaea (AOB/AOA) and the nitrite-oxidizing bacteria (NOB), and heterotrophic and autotrophic denitrifiers play a vital role in nitrification and denitrification with the involvement of ammonia monooxygenase (amoA) gene, nitrate reductase genes (narG), and nitrous oxide reductase (nosZ). Furthermore, adding additives such as struvite salts (MgNH4PO4·6H2O), biochar, and zeolites (clinoptilolite), and microbial inoculation, namely Bacillus cereus (ammonium strain), Pseudomonas donghuensis (nitrite strain), and Bacillus licheniformis (nitrogen fixer) can help control nitrogen loss. This review summarized critical issues of the nitrogen cycle and nitrogen loss in order to help future composting research with regard to compost quality and air pollution/odor control.


Assuntos
Compostagem , Amônia , Nitrificação , Nitritos , Nitrogênio , Ciclo do Nitrogênio , Óxido Nitroso/análise , Solo/química
5.
Drug Deliv ; 29(1): 882-888, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35277106

RESUMO

PURPOSE: Rheumatoid arthritis, a chronic and progressive inflammation condition in the joints, has significantly reduced the patient quality of life and life expectancy. Crucially, there is no complete therapy for this disease, and the current treatments possess numerous side effects. Thus, novel therapeutic approach is necessary. To that end, this study developed novel silk fibroin in-situ hydrogel containing Sesbania sesban L. extract, a plant with high anti-inflammatory actions that are beneficial for rheumatoid arthritis treatments. METHODS: The hydrogels were manufactured using simple method of spontaneous gelation at different temperature. The gel properties of morphology, gelation time, viscosity, gel strength, stability, drug loading capacity, drug release rate, and in-vitro anti-inflammatory activity were investigated with appropriate methods. RESULTS: The optimal formulation had highly porous structure, with a gelation time of 0.5 h at room temperature and bodily temperature of 37 °C, a viscosity of 2530 ± 50 cP, a gel strength of 1880.14 ± 35.10 g, and a physical stability of >6 months. Moreover, the hydrogel contained the Sesbania sesban L. leaf extract with a total phenolic content of 92.8 ± 8.30 mg GAE/g, and sustained the release rate for >20 days, followed the Higuchi model. Regarding the in-vitro activities, all formulations were nontoxic to the RAW 264.7 cell line and demonstrated comparable anti-inflammatory activity to the free extract, in terms of the NO reduction levels. CONCLUSION: Conclusively, the systems possessed potential properties to be further investigated to become a prospective rheumatoid arthritis treatment.


Assuntos
Artrite Reumatoide , Fibroínas , Hidrogéis , Extratos Vegetais/uso terapêutico , Sesbania , Artrite Reumatoide/tratamento farmacológico , Portadores de Fármacos/química , Fibroínas/química , Humanos , Hidrogéis/química , Extratos Vegetais/administração & dosagem , Estudos Prospectivos , Qualidade de Vida , Sesbania/química
7.
ChemistrySelect ; 5(21): 6312-6320, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32572383

RESUMO

GC-MS was applied to identify 24 main substances in Melaleuca cajuputi essential oil (TA) extracted from fresh cajeput leaves through steam distilling. The inhibitory capability of active compounds in the TA from Thua Thien Hue, Vietnam over the Angiotensin-Converting Enzyme 2 (ACE2) protein in human body - the host receptor for SARS-CoV-2 and the main protease (PDB6LU7) of the SARS-CoV-2 using docking simulation has been studied herein. The results indicate that the ACE2 and PDB6LU7 proteins were strongly inhibited by 10 out of 24 compounds accounting for 70.9% in the TA. The most powerful anticoronavirus activity is expressed in the order: Terpineol (TA2) ≈ Guaiol (TA5) ≈ Linalool (TA19) > Cineol (TA1) > ß-Selinenol (TA3) > α-Eudesmol (TA4) > γ-Eudesmol (TA7). Interestingly, the synergistic interactions of these 10 substances of the TA exhibit excellent inhibition into the ACE2 and PDB6LU7 proteins. The docking results orient that the natural Melaleuca cajuputi essential oil is considered as a valuable resource for preventing SARS-CoV-2 invasion into human body.

8.
ACS Omega ; 5(14): 8312-8320, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32363255

RESUMO

Eighteen active substances, including 17 organosulfur compounds found in garlic essential oil (T), were identified by GC-MS analysis. For the first time, using the molecular docking technique, we report the inhibitory effect of the considered compounds on the host receptor angiotensin-converting enzyme 2 (ACE2) protein in the human body that leads to a crucial foundation about coronavirus resistance of individual compounds on the main protease (PDB6LU7) protein of SARS-CoV-2. The results show that the 17 organosulfur compounds, accounting for 99.4% contents of the garlic essential oil, have strong interactions with the amino acids of the ACE2 protein and the main protease PDB6LU7 of SARS-CoV-2. The strongest anticoronavirus activity is expressed in allyl disulfide and allyl trisulfide, which account for the highest content in the garlic essential oil (51.3%). Interestingly, docking results indicate the synergistic interactions of the 17 substances, which exhibit good inhibition of the ACE2 and PDB6LU7 proteins. The results suggest that the garlic essential oil is a valuable natural antivirus source, which contributes to preventing the invasion of coronavirus into the human body.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...