Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Diabetes Res Clin Pract ; 106(2): 383-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25125339

RESUMO

The incidence of type 2 diabetes (T2D) is rapidly increasing worldwide and T2D is likely to affect 592 million people in 2035 if the current rate of progression is continued. Today, patients are diagnosed with T2D based on elevated blood glucose, either directly or indirectly (HbA1c). However, the information on disease progression is limited. Therefore, there is a need to identify novel early markers of glucose intolerance that reflect the underlying biology and the overall physiological, metabolic and clinical characteristics of progression towards diabetes. In the DEXLIFE study, several clinical cohorts provide the basis for a series of clinical, physiological and mechanistic investigations in combination with a range of--omic technologies to construct a detailed metabolic profile of high-risk individuals across multiple cohorts. In addition, an exercise and dietary intervention study is conducted, that will assess the impact on both plasma biomarkers and specific functional tissue-based markers. The DEXLIFE study will provide novel diagnostic and predictive biomarkers which may not only effectively detect the progression towards diabetes in high risk individuals but also predict responsiveness to lifestyle interventions known to be effective in the prevention of diabetes.


Assuntos
Biomarcadores/análise , Diabetes Mellitus Tipo 2/diagnóstico , Intolerância à Glucose/diagnóstico , Intolerância à Glucose/patologia , Estado Pré-Diabético/diagnóstico , Estado Pré-Diabético/patologia , Adulto , Idoso , Estudos de Casos e Controles , Estudos de Coortes , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/prevenção & controle , Dietoterapia , Progressão da Doença , Terapia por Exercício , Feminino , Intolerância à Glucose/epidemiologia , Intolerância à Glucose/terapia , Humanos , Estilo de Vida , Masculino , Pessoa de Meia-Idade , Estado Pré-Diabético/epidemiologia , Estado Pré-Diabético/terapia , Prognóstico , Fatores de Risco , Comportamento de Redução do Risco , Adulto Jovem
2.
Artigo em Inglês | MEDLINE | ID: mdl-11554304

RESUMO

Base excision repair mechanisms have been analyzed in nuclear and mitochondrial DNA. We measured the size and position of the newly incorporated DNA repair patch in various DNA substrates containing single oxidative lesions. Repair of 8-oxoguanine and of thymine glycol is almost exclusively via the base excision repair (BER) pathway with little or no involvement of nucleotide excision repair (NER). The repair mode is generally via the single-nucleotide replacement pathway with little incorporation into longer patches. Extension of these studies suggests that DNA polymerase beta plays a critical role not only in the short-patch repair process but also in the long-patch, PCNA-dependent pathway. Mitochondria are targets for a heavy load of oxidative DNA damage. They have efficient BER repair capacity, but cannot repair most bulky lesions normally repaired by NER. In vitro experiments performed using rat and human mitochondrial extracts suggest that the repair incorporation during the removal of uracil in DNA occurs via the short-patch repair BER pathway. Oxidative DNA damage accumulates with age in mitochondrial DNA, but this cannot be explained by an attenuation of DNA repair. In contrast, we observe that mitochondrial incision of 8-oxoG increases with age in rodents.


Assuntos
Adenina/análogos & derivados , Núcleo Celular/metabolismo , DNA Glicosilases , Reparo do DNA , DNA Mitocondrial/genética , DNA/genética , Guanina/análogos & derivados , Timina/análogos & derivados , Adenina/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Sistema Livre de Células , DNA/metabolismo , Dano ao DNA , DNA Polimerase beta/fisiologia , DNA Mitocondrial/metabolismo , DNA-Formamidopirimidina Glicosilase , Guanina/metabolismo , Hipoxantina/metabolismo , Linfócitos/metabolismo , Linfócitos/ultraestrutura , Mamíferos/genética , Mamíferos/metabolismo , Camundongos , Mitocôndrias/enzimologia , Dados de Sequência Molecular , N-Glicosil Hidrolases/fisiologia , Oxidantes/toxicidade , Oxirredução , Estresse Oxidativo , Mutação Puntual , Antígeno Nuclear de Célula em Proliferação/fisiologia , Ratos , Timina/metabolismo
3.
Cancer Res ; 61(14): 5378-81, 2001 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-11454679

RESUMO

Mitochondria are not only the major site for generation of reactive oxygen species, but also one of the main targets of oxidative damage. One of the major products of DNA oxidation, 8-oxodeoxyguanosine (8-oxodG), accumulates in mitochondrial DNA (mtDNA) at levels three times higher than in nuclear DNA. The main pathway for the repair of 8-oxodG is the base excision repair pathway initiated by oxoguanine DNA glycosylase (OGG1). We previously demonstrated that mammalian mitochondria from mice efficiently remove 8-oxodG from their genomes and isolated a protein from rat liver mitochondria with 8-oxoguanine (8-oxodG) DNA glycosylase/apurinic DNA lyase activity. In the present study, we demonstrated that the mitochondrial 8-oxodG DNA glycosylase/apurinic DNA lyase activity is the mitochondrial isoform of OGG1. Using mouse liver mitochondria isolated from ogg1(-/-) mice, we showed that the OGG1 gene encodes for the mitochondrial 8-oxodG glycosylase because these extracts have no incision activity toward an oligonucleotide containing a single 8-oxodG DNA base lesion. Consistent with an important role for the OGG1 protein in the removal of 8-oxodG from the mitochondrial genome, we found that mtDNA isolated from liver from OGG1-null mutant animals contained 20-fold more 8-oxodG than mtDNA from wild-type animals.


Assuntos
Reparo do DNA , DNA Mitocondrial/genética , Desoxiguanosina/genética , Guanina/análogos & derivados , Guanina/metabolismo , N-Glicosil Hidrolases/metabolismo , 8-Hidroxi-2'-Desoxiguanosina , Animais , Núcleo Celular/enzimologia , Núcleo Celular/genética , DNA Mitocondrial/metabolismo , DNA-Formamidopirimidina Glicosilase , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Hepáticas/enzimologia , Mitocôndrias Hepáticas/genética , Mutação , N-Glicosil Hidrolases/genética
4.
J Biol Chem ; 275(16): 11809-13, 2000 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-10766805

RESUMO

The repair pathways involved in the removal of thymine glycol (TG) from DNA by human cell extracts have been examined. Closed circular DNA constructs containing a single TG at a defined site were used as substrates to determine the patch size generated after in vitro repair by cell extracts. Restriction analysis of the repair incorporation in the vicinity of the lesion indicated that the majority of TG was repaired through the base excision repair (BER) pathways. Repair incorporation 5' to the lesion, characteristic for the nucleotide excision repair pathway, was not found. More than 80% of the TG repair was accomplished by the single-nucleotide repair mechanism, and the remaining TGs were removed by the long patch BER pathway. We also analyzed the role of the xeroderma pigmentosum, complementation group G (XPG) protein in the excision step of BER. Cell extracts deficient in XPG protein had an average 25% reduction in TG incision. These data show that BER is the primary pathway for repair of TG in DNA and that XPG protein may be involved in repair of TG as an accessory factor.


Assuntos
Reparo do DNA , DNA/metabolismo , Timina/análogos & derivados , Sequência de Bases , Linhagem Celular , Fibroblastos/metabolismo , Humanos , Dados de Sequência Molecular , Mutagênese , Mapeamento por Restrição , Timina/metabolismo , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA