Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(6): 112653, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37379209

RESUMO

Tubulin isotypes are critical for the functions of cellular microtubules, which exhibit different stability and harbor various post-translational modifications. However, how tubulin isotypes determine the activities of regulators for microtubule stability and modifications remains unknown. Here, we show that human α4A-tubulin, a conserved genetically detyrosinated α-tubulin isotype, is a poor substrate for enzymatic tyrosination. To examine the stability of microtubules reconstituted with defined tubulin compositions, we develop a strategy to site-specifically label recombinant human tubulin for single-molecule TIRF microscopy-based in vitro assays. The incorporation of α4A-tubulin into the microtubule lattice stabilizes the polymers from passive and MCAK-stimulated depolymerization. Further characterization reveals that the compositions of α-tubulin isotypes and tyrosination/detyrosination states allow graded control for the microtubule binding and the depolymerization activities of MCAK. Together, our results uncover the tubulin isotype-dependent enzyme activity for an integrated regulation of α-tubulin tyrosination/detyrosination states and microtubule stability, two well-correlated features of cellular microtubules.


Assuntos
Microtúbulos , Tubulina (Proteína) , Humanos , Microtúbulos/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional , Tubulina (Proteína)/metabolismo
2.
Nucleic Acids Res ; 51(3): 1120-1138, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36631980

RESUMO

Oct4 is essential to maintain pluripotency and has a pivotal role in establishing the germline. Its DNA-binding POU domain was recently found to bind motifs with methylated CpG elements normally associated with epigenetic silencing. However, the mode of binding and the consequences of this capability has remained unclear. Here, we show that Oct4 binds to a compact palindromic DNA element with a methylated CpG core (CpGpal) in alternative states of pluripotency and during cellular reprogramming towards induced pluripotent stem cells (iPSCs). During cellular reprogramming, typical Oct4 bound enhancers are uniformly demethylated, with the prominent exception of the CpGpal sites where DNA methylation is often maintained. We demonstrate that Oct4 cooperatively binds the CpGpal element as a homodimer, which contrasts with the ectoderm-expressed POU factor Brn2. Indeed, binding to CpGpal is Oct4-specific as other POU factors expressed in somatic cells avoid this element. Binding assays combined with structural analyses and molecular dynamic simulations show that dimeric Oct4-binding to CpGpal is driven by the POU-homeodomain whilst the POU-specific domain is detached from DNA. Collectively, we report that Oct4 exerts parts of its regulatory function in the context of methylated DNA through a DNA recognition mechanism that solely relies on its homeodomain.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas , Fator 3 de Transcrição de Octâmero , Diferenciação Celular/genética , DNA/metabolismo , Metilação de DNA , Epigênese Genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Humanos , Animais , Camundongos
3.
Proc Natl Acad Sci U S A ; 119(44): e2209053119, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36282919

RESUMO

The spindle is a dynamic intracellular structure self-organized from microtubules and microtubule-associated proteins. The spindle's bipolar morphology is essential for the faithful segregation of chromosomes during cell division, and it is robustly maintained by multifaceted mechanisms. However, abnormally shaped spindles, such as multipolar spindles, can stochastically arise in a cell population and cause chromosome segregation errors. The physical basis of how microtubules fail in bipolarization and occasionally favor nonbipolar assembly is poorly understood. Here, using live fluorescence imaging and quantitative shape analysis in Xenopus egg extracts, we find that spindles of varied shape morphologies emerge through nonrandom, bistable self-organization paths, one leading to a bipolar and the other leading to a multipolar phenotype. The bistability defines the spindle's unique morphological growth dynamics linked to each shape phenotype and can be promoted by a locally distorted microtubule flow that arises within premature structures. We also find that bipolar and multipolar spindles are stable at the steady-state in bulk but can infrequently switch between the two phenotypes. Our microneedle-based physical manipulation further demonstrates that a transient force perturbation applied near the assembled pole can trigger the phenotypic switching, revealing the mechanical plasticity of the spindle. Together with molecular perturbation of kinesin-5 and augmin, our data propose the physical and molecular bases underlying the emergence of spindle-shape variation, which influences chromosome segregation fidelity during cell division.


Assuntos
Cinesinas , Fuso Acromático , Fuso Acromático/metabolismo , Microtúbulos/metabolismo , Segregação de Cromossomos , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose
4.
Front Cell Dev Biol ; 10: 861648, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573669

RESUMO

Microtubules are cytoskeletal filaments underlying the morphology and functions of all eukaryotic cells. In higher eukaryotes, the basic building blocks of these non-covalent polymers, ɑ- and ß-tubulins, are encoded by expanded tubulin family genes (i.e., isotypes) at distinct loci in the genome. While ɑ/ß-tubulin heterodimers have been isolated and examined for more than 50 years, how tubulin isotypes contribute to the microtubule organization and functions that support diverse cellular architectures remains a fundamental question. To address this knowledge gap, in vitro reconstitution of microtubules with purified ɑ/ß-tubulin proteins has been employed for biochemical and biophysical characterization. These in vitro assays have provided mechanistic insights into the regulation of microtubule dynamics, stability, and interactions with other associated proteins. Here we survey the evolving strategies of generating purified ɑ/ß-tubulin heterodimers and highlight the advances in tubulin protein biochemistry that shed light on the roles of tubulin isotypes in determining microtubule structures and properties.

5.
J Cell Biol ; 220(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33496729

RESUMO

The formation of cellular microtubule networks is regulated by the γ-tubulin ring complex (γ-TuRC). This ∼2.3 MD assembly of >31 proteins includes γ-tubulin and GCP2-6, as well as MZT1 and an actin-like protein in a "lumenal bridge" (LB). The challenge of reconstituting the γ-TuRC has limited dissections of its assembly and function. Here, we report a biochemical reconstitution of the human γ-TuRC (γ-TuRC-GFP) as a ∼35 S complex that nucleates microtubules in vitro. In addition, we generate a subcomplex, γ-TuRCΔLB-GFP, which lacks MZT1 and actin. We show that γ-TuRCΔLB-GFP nucleates microtubules in a guanine nucleotide-dependent manner and with similar efficiency as the holocomplex. Electron microscopy reveals that γ-TuRC-GFP resembles the native γ-TuRC architecture, while γ-TuRCΔLB-GFP adopts a partial cone shape presenting only 8-10 γ-tubulin subunits and lacks a well-ordered lumenal bridge. Our results show that the γ-TuRC can be reconstituted using a limited set of proteins and suggest that the LB facilitates the self-assembly of regulatory interfaces around a microtubule-nucleating "core" in the holocomplex.


Assuntos
Tubulina (Proteína)/metabolismo , Actinas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Cinética , Microtúbulos/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/ultraestrutura
6.
STAR Protoc ; 1(1)2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32783031

RESUMO

α/ß-tubulin heterodimers, which can harbor diverse isotypes and post-translational modifications, polymerize into microtubules that are fundamental to many cellular processes. Due to long-standing challenges in generating recombinant tubulin, however, it has been difficult to examine the properties of specific tubulin isotypes. Here, we provide a protocol for purifying milligrams of affinity tag-free, isotypically pure recombinant tubulin. Our method can be applicable to any tubulin of interest, opening the door to dissecting how tubulin diversity regulates microtubule function. For complete details on the use and execution of this protocol, please see Ti et al. (2018).


Assuntos
Clonagem Molecular/métodos , Tubulina (Proteína)/isolamento & purificação , Animais , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Células Sf9 , Tubulina (Proteína)/genética
7.
Cell ; 180(1): 165-175.e16, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31862189

RESUMO

The γ-tubulin ring complex (γ-TuRC) is an essential regulator of centrosomal and acentrosomal microtubule formation, yet its structure is not known. Here, we present a cryo-EM reconstruction of the native human γ-TuRC at ∼3.8 Å resolution, revealing an asymmetric, cone-shaped structure. Pseudo-atomic models indicate that GCP4, GCP5, and GCP6 form distinct Y-shaped assemblies that structurally mimic GCP2/GCP3 subcomplexes distal to the γ-TuRC "seam." We also identify an unanticipated structural bridge that includes an actin-like protein and spans the γ-TuRC lumen. Despite its asymmetric architecture, the γ-TuRC arranges γ-tubulins into a helical geometry poised to nucleate microtubules. Diversity in the γ-TuRC subunits introduces large (>100,000 Å2) surfaces in the complex that allow for interactions with different regulatory factors. The observed compositional complexity of the γ-TuRC could self-regulate its assembly into a cone-shaped structure to control microtubule formation across diverse contexts, e.g., within biological condensates or alongside existing filaments.


Assuntos
Centro Organizador dos Microtúbulos/metabolismo , Centro Organizador dos Microtúbulos/ultraestrutura , Tubulina (Proteína)/ultraestrutura , Actinas/metabolismo , Microscopia Crioeletrônica/métodos , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/ultraestrutura , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo
8.
Dev Cell ; 47(2): 175-190.e5, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30245156

RESUMO

Cell biological studies have shown that protofilament number, a fundamental feature of microtubules, can correlate with the expression of different tubulin isotypes. However, it is not known if tubulin isotypes directly control this basic microtubule property. Here, we report high-resolution cryo-EM reconstructions (3.5-3.65 Å) of purified human α1B/ß3 and α1B/ß2B microtubules and find that the ß-tubulin isotype can determine protofilament number. Comparisons of atomic models of 13- and 14-protofilament microtubules reveal how tubulin subunit plasticity, manifested in "accordion-like" distributed structural changes, can accommodate distinct lattice organizations. Furthermore, compared to α1B/ß3 microtubules, α1B/ß2B filaments are more stable to passive disassembly and against depolymerization by MCAK or chTOG, microtubule-associated proteins with distinct mechanisms of action. Mixing tubulin isotypes in different proportions results in microtubules with protofilament numbers and stabilities intermediate to those of isotypically pure filaments. Together, our findings indicate that microtubule protofilament number and stability can be controlled through ß-tubulin isotype composition.


Assuntos
Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Tubulina (Proteína)/fisiologia , Citoesqueleto/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/química , Ligação Proteica , Isoformas de Proteínas , Proteínas Recombinantes , Tubulina (Proteína)/química , Tubulina (Proteína)/genética
9.
Proc Natl Acad Sci U S A ; 113(34): 9430-9, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27493215

RESUMO

Proteins that associate with microtubules (MTs) are crucial to generate MT arrays and establish different cellular architectures. One example is PRC1 (protein regulator of cytokinesis 1), which cross-links antiparallel MTs and is essential for the completion of mitosis and cytokinesis. Here we describe a 4-Å-resolution cryo-EM structure of monomeric PRC1 bound to MTs. Residues in the spectrin domain of PRC1 contacting the MT are highly conserved and interact with the same pocket recognized by kinesin. We additionally found that PRC1 promotes MT assembly even in the presence of the MT stabilizer taxol. Interestingly, the angle of the spectrin domain on the MT surface corresponds to the previously observed cross-bridge angle between MTs cross-linked by full-length, dimeric PRC1. This finding, together with molecular dynamic simulations describing the intrinsic flexibility of PRC1, suggests that the MT-spectrin domain interface determines the geometry of the MT arrays cross-linked by PRC1.


Assuntos
Proteínas de Ciclo Celular/ultraestrutura , Cinesinas/ultraestrutura , Microtúbulos/ultraestrutura , Subunidades Proteicas/química , Tubulina (Proteína)/ultraestrutura , Motivos de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Expressão Gênica , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/metabolismo , Simulação de Dinâmica Molecular , Paclitaxel/química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Suínos , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química
10.
J Cell Biol ; 213(4): 425-33, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27185835

RESUMO

Diversity in cytoskeleton organization and function may be achieved through variations in primary sequence of tubulin isotypes. Recently, isotype functional diversity has been linked to a "tubulin code" in which the C-terminal tail, a region of substantial sequence divergence between isotypes, specifies interactions with microtubule-associated proteins. However, it is not known whether residue changes in this region alter microtubule dynamic instability. Here, we examine recombinant tubulin with human ß isotype IIB and characterize polymerization dynamics. Microtubules with ßIIB have catastrophe frequencies approximately threefold lower than those with isotype ßIII, a suppression similar to that achieved by regulatory proteins. Further, we generate chimeric ß tubulins with native tail sequences swapped between isotypes. These chimeras have catastrophe frequencies similar to that of the corresponding full-length construct with the same core sequence. Together, our data indicate that residue changes within the conserved ß tubulin core are largely responsible for the observed isotype-specific changes in dynamic instability parameters and tune tubulin's polymerization properties across a wide range.


Assuntos
Tubulina (Proteína)/metabolismo , Sequência de Aminoácidos , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Polimerização
11.
Dev Cell ; 37(1): 72-84, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-27046833

RESUMO

The assembly of microtubule-based cellular structures depends on regulated tubulin polymerization and directional transport. Here, we purify and characterize tubulin heterodimers that have human ß-tubulin isotype III (TUBB3), as well as heterodimers with one of two ß-tubulin mutations (D417H or R262H). Both point mutations are proximal to the kinesin-binding site and have been linked to an ocular motility disorder in humans. Compared to wild-type, microtubules with these mutations have decreased catastrophe frequencies and increased average lifetimes of plus- and minus-end-stabilizing caps. Importantly, the D417H mutation does not alter microtubule lattice structure or Mal3 binding to growing filaments. Instead, this mutation reduces the affinity of tubulin for TOG domains and colchicine, suggesting that the distribution of tubulin heterodimer conformations is changed. Together, our findings reveal how residues on the surface of microtubules, distal from the GTP-hydrolysis site and inter-subunit contacts, can alter polymerization dynamics at the plus- and minus-ends of microtubules.


Assuntos
Cinesinas/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Sítios de Ligação/genética , Linhagem Celular , Humanos , Espectrometria de Massas , Mutação Puntual/genética , Polimerização , Ligação Proteica/genética , Conformação Proteica , Estrutura Terciária de Proteína
12.
Biophys J ; 105(6): 1324-35, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-24047983

RESUMO

Characterizing protein-protein interactions is essential for understanding molecular mechanisms, although reproducing cellular conditions in vitro is challenging and some proteins are difficult to purify. We developed a method to measure binding to cellular structures using fission yeast cells as reaction vessels. We varied the concentrations of Sid2p and Mob1p (proteins of the septation initiation network) and measured their binding to spindle pole bodies (SPBs), the centrosome equivalent of yeast. From our measurements we infer that Sid2p and Mob1p both exist as monomeric, heterodimeric, and homodimeric species throughout the cell cycle. During interphase these species have widely different affinities for their common receptor Cdc11p on the SPB. The data support a model with a subset of Cdc11p binding the heterodimeric species with a Kd < 0.1 µM when Sid2p binds Mob1p-Cdc11p and Kd in the micromolar range when Mob1p binds Sid2p-Cdc11p. During mitosis an additional species presumed to be the phosphorylated Sid2p-Mob1p heterodimer binds SPBs with a lower affinity. Homodimers of Sid2p or Mob1p bind to the rest of Cdc11p at SPBs with lower affinity: Kds > 10 µM during interphase and somewhat stronger during mitosis. These measurements allowed us to account for the fluctuations in Sid2p binding to SPBs throughout the cell cycle.


Assuntos
Ciclo Celular , Viabilidade Microbiana , Microscopia de Fluorescência/métodos , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citologia , Corpos Polares do Fuso/metabolismo , Linhagem Celular , Processamento de Imagem Assistida por Computador , Interfase , Ligantes , Mitose , Organelas/metabolismo , Ligação Proteica
13.
J Am Chem Soc ; 135(34): 12520-3, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23930594

RESUMO

Microtubules are hollow tube-like biological polymers required for transport in diverse cellular contexts and are important drug targets. Microtubule function depends on interactions with associated proteins and post-translational modifications at specific sites located on its interior and exterior surfaces. However, we lack strategies to selectively perturb or probe these basic biochemical mechanisms. In this work, by combining amber suppression-mediated non-natural amino acid incorporation and tubulin overexpression in budding yeast, we demonstrate, for the first time, a general strategy for site-specific chemistry on microtubules. Probes and labels targeted to precise sites on the interior and exterior surfaces of microtubules will allow analysis and modulation of interactions with proteins and drugs, and elucidation of the functions of post-translational modifications.


Assuntos
Microtúbulos/química , Polímeros/química , Aminoácidos/química , Aminoácidos/metabolismo , Humanos , Microtúbulos/metabolismo , Modelos Moleculares , Estrutura Molecular , Polímeros/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Tubulina (Proteína)/biossíntese , Tubulina (Proteína)/química
14.
Cell ; 154(2): 377-90, 2013 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-23870126

RESUMO

Error-free cell division depends on the assembly of the spindle midzone, a specialized array of overlapping microtubules that emerges between segregating chromosomes during anaphase. The molecular mechanisms by which a subset of dynamic microtubules from the metaphase spindle are selected and organized into a stable midzone array are poorly understood. Here, we show using in vitro reconstitution assays that PRC1 and kinesin-4, two microtubule-associated proteins required for midzone assembly, can tag microtubule plus ends. Remarkably, the size of these tags is proportional to filament length. We determine the crystal structure of the PRC1 homodimer and map the protein-protein interactions needed for tagging microtubule ends. Importantly, length-dependent microtubule plus-end-tagging by PRC1 is also observed in dividing cells. Our findings suggest how biochemically similar microtubules can be differentially marked, based on length, for selective regulation during the formation of specialized arrays, such as those required for cytokinesis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Microtúbulos/metabolismo , Sequência de Aminoácidos , Proteínas de Ciclo Celular/química , Cristalografia por Raios X , Citocinese , Dimerização , Humanos , Cinesinas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Alinhamento de Sequência
15.
Proc Natl Acad Sci U S A ; 108(33): E463-71, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21676862

RESUMO

Actin-related protein (Arp) 2/3 complex mediates the formation of actin filament branches during endocytosis and at the leading edge of motile cells. The pathway of branch formation is ambiguous owing to uncertainty regarding the stoichiometry and location of VCA binding sites on Arp2/3 complex. Isothermal titration calorimetry showed that the CA motif from the C terminus of fission yeast WASP (Wsp1p) bound to fission yeast and bovine Arp2/3 complex with a stoichiometry of 2 to 1 and very different affinities for the two sites (K(d)s of 0.13 and 1.6 µM for fission yeast Arp2/3 complex). Equilibrium binding, kinetic, and cross-linking experiments showed that (i) CA at high-affinity site 1 inhibited Arp2/3 complex binding to actin filaments, (ii) low-affinity site 2 had a higher affinity for CA when Arp2/3 complex was bound to actin filaments, and (iii) Arp2/3 complex had a much higher affinity for free CA than VCA cross-linked to an actin monomer. Crystal structures showed the C terminus of CA bound to the low-affinity site 2 on Arp3 of bovine Arp2/3 complex. The C helix is likely to bind to the barbed end groove of Arp3 in a position for VCA to deliver the first actin subunit to the daughter filament.


Assuntos
Proteína 2 Relacionada a Actina/metabolismo , Proteína 3 Relacionada a Actina/metabolismo , Bovinos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Proteína 2 Relacionada a Actina/química , Proteína 3 Relacionada a Actina/química , Animais , Sítios de Ligação , Cristalografia por Raios X , Polimerização , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Schizosaccharomyces/química , Proteínas de Schizosaccharomyces pombe/química , Termodinâmica , Proteína da Síndrome de Wiskott-Aldrich/química
16.
J Biol Chem ; 286(7): 5784-92, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21148484

RESUMO

Fission yeast Schizosaccharomyces pombe is an important genetic model organism for studying the mechanisms of endocytosis and cytokinesis. However, most work on the biochemical properties of fission yeast actin-binding proteins has been done with skeletal muscle actin for matters of convenience. When simulations of mathematical models of the mechanism of endocytosis were compared with events in live cells, some of the reactions appeared to be much faster than observed in biochemical experiments with muscle actin. Here, we used gelsolin affinity chromatography to purify actin from fission yeast. S. pombe actin shares many properties with skeletal muscle actin but has higher intrinsic nucleotide exchange rate, faster trimer nucleus formation, faster phosphate dissociation rate from polymerized actin, and faster nucleation of actin filaments with Arp2/3 complex. These properties close the gap between the biochemistry and predictions made by mathematical models of endocytosis in S. pombe cells.


Assuntos
Actinas/química , Actinas/isolamento & purificação , Modelos Biológicos , Músculo Esquelético/química , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/isolamento & purificação , Schizosaccharomyces/química , Complexo 2-3 de Proteínas Relacionadas à Actina/química , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Animais , Gelsolina/química , Camundongos , Músculo Esquelético/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
17.
Genes Dev ; 20(15): 2067-81, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16847351

RESUMO

The synaptonemal complex (SC) is a proteinaceous complex that apparently mediates synapsis between homologous chromosomes during meiotic prophase. In Saccharomyces cerevisiae, the Zip1 protein is the integral component of the SC. In the absence of a DNA double-strand break or the SC initiation protein Zip3, Zip1 proteins aggregate to form a polycomplex (PC). In addition, Zip1 is also responsible for DSB-independent nonhomologous centromere coupling at early meiotic prophase. We report here that Zip3 is a SUMO (small ubiquitin-related modifier) E3 ligase and that Zip1 is a binding protein for SUMO-conjugated products. Our results also suggest that at early meiotic prophase, Zip1 interacts with Zip3-independent Smt3 conjugates (e.g., Top2) to promote nonhomologous centromere coupling. At and after mid-prophase, the Zip1 protein begins to associate with Zip3-dependent Smt3 conjugates (e.g., Red1) along meiotic chromosomes in the wild-type cell to form SCs and with Smt3 polymeric chains in the zip3 mutant to form PCs.


Assuntos
Meiose , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/fisiologia , Complexo Sinaptonêmico/fisiologia , Sequência de Aminoácidos , Centrômero/fisiologia , Cromossomos Fúngicos , Dados de Sequência Molecular , Proteínas Nucleares , Prófase , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos
18.
Proc Natl Acad Sci U S A ; 101(29): 10572-7, 2004 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-15249670

RESUMO

Saccharomyces cerevisiae Hop2 and Mnd1 are abundant meiosisspecific chromosomal proteins, and mutations in the corresponding genes lead to defects in meiotic recombination and in homologous chromosome interactions during mid-prophase. Analysis of various double mutants suggests that HOP2, MND1, and DMC1 act in the same genetic pathway for the establishment of close juxtaposition between homologous meiotic chromosomes. Biochemical studies indicate that Hop2 and Mnd1 proteins form a stable heterodimer with a higher affinity for double-stranded than single-stranded DNA, and that this heterodimer stimulates the strand assimilation activity of Dmc1 in vitro. Together, the genetic and biochemical results suggest that Hop2, Mnd1, and Dmc1 are functionally interdependent during meiotic DNA recombination.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Meiose/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Dimerização , Epistasia Genética , Ligação Proteica , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...