Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 419, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684951

RESUMO

BACKGROUD: The genus Mesorhizobium is shown by phylogenomics to be paraphyletic and forms part of a complex that includes the genera Aminobacter, Aquamicrobium, Pseudaminobacter and Tianweitania. The relationships for type strains belong to these genera need to be carefully re-evaluated. RESULTS: The relationships of Mesorhizobium complex are evaluated based on phylogenomic analyses and overall genome relatedness indices (OGRIs) of 61 type strains. According to the maximum likelihood phylogenetic tree based on concatenated sequences of 539 core proteins and the tree constructed using the bac120 bacterial marker set from Genome Taxonomy Database, 65 type strains were grouped into 9 clusters. Moreover, 10 subclusters were identified based on the OGRIs including average nucleotide identity (ANI), average amino acid identity (AAI) and core-proteome average amino acid identity (cAAI), with AAI and cAAI showing a clear intra- and inter-(sub)cluster gaps of 77.40-80.91% and 83.98-86.16%, respectively. Combined with the phylogenetic trees and OGRIs, the type strains were reclassified into 15 genera. This list includes five defined genera Mesorhizobium, Aquamicrobium, Pseudaminobacter, Aminobacterand Tianweitania, among which 40/41 Mesorhizobium species and one Aminobacter species are canonical legume microsymbionts. The other nine (sub)clusters are classified as novel genera. Cluster III, comprising symbiotic M. alhagi and M. camelthorni, is classified as Allomesorhizobium gen. nov. Cluster VI harbored a single symbiotic species M. albiziae and is classified as Neomesorhizobium gen. nov. The remaining seven non-symbiotic members were proposed as: Neoaquamicrobium gen. nov., Manganibacter gen. nov., Ollibium gen. nov., Terribium gen. nov., Kumtagia gen. nov., Borborobacter gen. nov., Aerobium gen. nov.. Furthermore, the genus Corticibacterium is restored and two species in Subcluster IX-1 are reclassified as the member of this genus. CONCLUSION: The Mesorhizobium complex are classified into 15 genera based on phylogenomic analyses and OGRIs of 65 type strains. This study resolved previously non-monophyletic genera in the Mesorhizobium complex.


Assuntos
Genoma Bacteriano , Mesorhizobium , Filogenia , Mesorhizobium/genética , Mesorhizobium/classificação , Genômica/métodos
3.
Genes (Basel) ; 14(2)2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36833201

RESUMO

There are ubiquitous variations in symbiotic performance of different rhizobial strains associated with the same legume host in agricultural practices. This is due to polymorphisms of symbiosis genes and/or largely unexplored variations in integration efficiency of symbiotic function. Here, we reviewed cumulative evidence on integration mechanisms of symbiosis genes. Experimental evolution, in concert with reverse genetic studies based on pangenomics, suggests that gain of the same circuit of key symbiosis genes through horizontal gene transfer is necessary but sometimes insufficient for bacteria to establish an effective symbiosis with legumes. An intact genomic background of the recipient may not support the proper expression or functioning of newly acquired key symbiosis genes. Further adaptive evolution, through genome innovation and reconstruction of regulation networks, may confer the recipient of nascent nodulation and nitrogen fixation ability. Other accessory genes, either co-transferred with key symbiosis genes or stochastically transferred, may provide the recipient with additional adaptability in ever-fluctuating host and soil niches. Successful integrations of these accessory genes with the rewired core network, regarding both symbiotic and edaphic fitness, can optimize symbiotic efficiency in various natural and agricultural ecosystems. This progress also sheds light on the development of elite rhizobial inoculants using synthetic biology procedures.


Assuntos
Fabaceae , Rhizobium , Rhizobium/genética , Simbiose/genética , Transferência Genética Horizontal , Ecossistema , Fixação de Nitrogênio/genética , Fabaceae/microbiologia
4.
Sci Adv ; 9(2): eade1150, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36638166

RESUMO

Symbiotic nitrogen fixation boosts legume growth and production in nitrogen-poor soils. It has long been assumed that fixed nitrogen increases reproductive success, but until now, the regulatory mechanism was unknown. Here, we report a symbiotic flowering pathway that couples symbiotic and nutrient signals to the flowering induction pathway in legumes. We show that the symbiotic microRNA-microRNA172c (miR172c) and fixed nitrogen systemically and synergistically convey symbiotic and nutritional cues from roots to leaves to promote soybean (Glycine max) flowering. The combinations of symbiotic miR172c and local miR172c elicited by fixed nitrogen and development in leaves activate florigen-encoding FLOWERING LOCUS T (FT) homologs (GmFT2a/5a) by repressing TARGET OF EAT1-like 4a (GmTOE4a). Thus, FTs trigger reproductive development, which allows legumes to survive and reproduce under low-nitrogen conditions.


Assuntos
Glycine max , Fixação de Nitrogênio , Nitrogênio/metabolismo , Fixação de Nitrogênio/fisiologia , Glycine max/genética , Simbiose/fisiologia , MicroRNAs , RNA de Plantas , Genes de Plantas
5.
ISME J ; 17(3): 417-431, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36627434

RESUMO

Migration from rhizosphere to rhizoplane is a key selecting process in root microbiome assembly, but not fully understood. Rhizobiales members are overrepresented in the core root microbiome of terrestrial plants, and here we report a genome-wide transposon-sequencing of rhizoplane fitness genes of beneficial Sinorhizobium fredii on wild soybean, cultivated soybean, rice, and maize. There were few genes involved in broad-host-range rhizoplane colonization. The fadL mutant lacking a fatty acid transporter exhibited high colonization rates, while mutations in exoFQP (encoding membrane proteins directing exopolysaccharide polymerization and secretion), but not those in exo genes essential for exopolysaccharide biosynthesis, led to severely impaired colonization rates. This variation was not explainable by their rhizosphere and rhizoplane survivability, and associated biofilm and exopolysaccharide production, but consistent with their migration ability toward rhizoplane, and associated surface motility and the mixture of quorum-sensing AHLs (N-acylated-L-homoserine lactones). Genetics and physiology evidences suggested that FadL mediated long-chain AHL uptake while ExoF mediated the secretion of short-chain AHLs which negatively affected long-chain AHL biosynthesis. The fadL and exoF mutants had elevated and depleted extracellular long-chain AHLs, respectively. A synthetic mixture of long-chain AHLs mimicking that of the fadL mutant can improve rhizobial surface motility. When this AHL mixture was spotted into rhizosphere, the migration toward roots and rhizoplane colonization of S. fredii were enhanced in a diffusible way. This work adds novel parts managing extracellular AHLs, which modulate bacterial migration toward rhizoplane. The FadL-ExoFQP system is conserved in Alphaproteobacteria and may shape the "home life" of diverse keystone rhizobacteria.


Assuntos
Rhizobium , Bactérias/genética , Percepção de Quorum , Biofilmes , Ácidos Graxos , Acil-Butirolactonas/metabolismo
6.
ISME J ; 17(2): 297-308, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36434281

RESUMO

The distribution and abundance of transposable elements across the tree of life have significantly shaped the evolution of cellular organisms, but the underlying mechanisms shaping these ecological patterns remain elusive. Here we establish a "common garden" approach to study causal ecological interactions between a xenogeneic conditional lethal sacB gene and the community of transposable insertion sequences (ISs) in a multipartite prokaryote genome. Xenogeneic sacB of low, medium, or high GC content was individually inserted into three replicons of a model bacterium Sinorhizobium fredii, and exhibited replicon- and GC-dependent variation in genetic stability. This variation was largely attributable to multidimensional niche differentiation for IS community members. The transposition efficiency of major active ISs depended on the nucleoid-associated xenogeneic silencer MucR. Experimentally eliminating insertion activity of specific ISs by deleting MucR strongly demonstrated a dominant role of niche differentiation among ISs. This intracellular common garden approach in the experimental evolution context allows not only for evaluating genetic stability of natural and synthetic xenogeneic genes of different sequence signatures in host cells but also for tracking and testing causal relationships in unifying ecological principles in genome ecology.


Assuntos
Elementos de DNA Transponíveis , Genoma Bacteriano , Bactérias/genética , Células Procarióticas , Replicon
7.
Genes (Basel) ; 13(11)2022 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-36360159

RESUMO

Plant growth-promoting rhizobacteria (PGPR) are widely used to improve soil nutrients and promote plant growth and health. However, the growth-promoting effect of a single PGPR on plants is limited. Here, we evaluated the effect of applying rhizobium Bradyrhizobium japonicum 5038 (R5038) and two PGPR strains, Bacillus aryabhattai MB35-5 (BA) and Paenibacillus mucilaginosus 3016 (PM), alone or in different combinations on the soil properties and rhizosphere bacterial community composition of soybean (Glycine max). Additionally, metagenomic sequencing was performed to elucidate the profile of functional genes. Inoculation with compound microbial inoculant containing R5038 and BA (RB) significantly improved nodule nitrogenase activity and increased soil nitrogen content, and urease activity increased the abundance of the nitrogen cycle genes and Betaproteobacteria and Chitinophagia in the rhizosphere. In the treatment of inoculant-containing R5038 and PM (RP), significant changes were found for the abundance of Deltaproteobacteria and Gemmatimonadetes and the phosphorus cycle genes, and soil available phosphorus and phosphatase activity were increased. The RBP inoculants composed of three strains (R5038, BA and PM) significantly affected soybean biomass and the N and P contents of the rhizosphere. Compared with RB and RP, RBP consistently increased soybean nitrogen content, and dry weight. Overall, these results showed that several PGPR with different functions could be combined into composite bacterial inoculants, which coordinately modulate the rhizosphere microbial community structure and improve soybean growth.


Assuntos
Bacillus , Bradyrhizobium , Paenibacillus , Bradyrhizobium/genética , Glycine max , Raízes de Plantas/microbiologia , Solo/química , Paenibacillus/genética , Fósforo , Nitrogênio
8.
Nucleic Acids Res ; 50(15): 8580-8598, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36007892

RESUMO

Bacterial adaptation is largely shaped by horizontal gene transfer, xenogeneic silencing mediated by lineage-specific DNA bridgers (H-NS, Lsr2, MvaT and Rok), and various anti-silencing mechanisms. No xenogeneic silencing DNA bridger is known for α-proteobacteria, from which mitochondria evolved. By investigating α-proteobacterium Sinorhizobium fredii, a facultative legume microsymbiont, here we report the conserved zinc-finger bearing MucR as a novel xenogeneic silencing DNA bridger. Self-association mediated by its N-terminal domain (NTD) is required for DNA-MucR-DNA bridging complex formation, maximizing MucR stability, transcriptional silencing, and efficient symbiosis in legume nodules. Essential roles of NTD, CTD (C-terminal DNA-binding domain), or full-length MucR in symbiosis can be replaced by non-homologous NTD, CTD, or full-length protein of H-NS from γ-proteobacterium Escherichia coli, while NTD rather than CTD of Lsr2 from Gram-positive Mycobacterium tuberculosis can replace the corresponding domain of MucR in symbiosis. Chromatin immunoprecipitation sequencing reveals similar recruitment profiles of H-NS, MucR and various functional chimeric xenogeneic silencers across the multipartite genome of S. fredii, i.e. preferring AT-rich genomic islands and symbiosis plasmid with key symbiosis genes as shared targets. Collectively, the convergently evolved DNA bridger MucR predisposed α-proteobacteria to integrate AT-rich foreign DNA including symbiosis genes, horizontal transfer of which is strongly selected in nature.


Assuntos
Alphaproteobacteria , Regulação Bacteriana da Expressão Gênica , Alphaproteobacteria/genética , Proteínas de Bactérias/metabolismo , DNA , Escherichia coli/genética , Escherichia coli/metabolismo , Simbiose
9.
Anim Biosci ; 35(11): 1787-1799, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35507845

RESUMO

OBJECTIVE: Choline deficiency, one main trigger for nonalcoholic fatty liver disease (NAFLD), is closely related to lipid metabolism disorder. Previous study in a choline-deficient model has largely focused on gene expression rather than gene structure, especially sparse are studies regarding to alternative splicing (AS). In modern life science research, primary hepatocytes culture technology facilitates such studies, which can accurately imitate liver activity in vitro and show unique superiority. Whereas limitations to traditional hepatocytes culture technology exist in terms of efficiency and operability. This study pursued an optimization culture method for duck primary hepatocytes to explore AS in choline-deficient model. METHODS: We performed an optimization culture method for duck primary hepatocytes with multi-step digestion procedure from Pekin duck embryos. Subsequently a NAFLD model was constructed with choline-free medium. RNA-seq and further analysis by rMATS were performed to identify AS events alterations in choline-deficency duck primary hepatocytes. RESULTS: The results showed E13 (embryonic day 13) to E15 is suitable to obtain hepatocytes, and the viability reached over 95% by trypan blue exclusion assay. Primary hepatocyte retained their biological function as well identified by Periodic Acid-Schiff staining method and Glucose-6-phosphate dehydrogenase activity assay, respectively. Meanwhile, genes of alb and afp and specific protein of albumin were detected to verify cultured hepatocytes. Immunofluorescence was used to evaluate purity of hepatocytes, presenting up to 90%. On this base, choline-deficient model was constructed and displayed significantly increase of intracellular triglyceride and cholesterol as reported previously. Intriguingly, our data suggested that AS events in choline-deficient model were implicated in pivotal biological processes as an aberrant transcriptional regulator, of which 16 genes were involved in lipid metabolism and highly enriched in glycerophospholipid metabolism. CONCLUSION: An effective and rapid protocol for obtaining duck primary hepatocytes was established, by which our findings manifested choline deficiency could induce the accumulation of lipid and result in aberrant AS events in hepatocytes, providing a novel insight into various AS in the metabolism role of choline.

10.
mBio ; 13(3): e0372121, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35491828

RESUMO

The rhizobium-legume symbiosis is essential for sustainable agriculture by reducing nitrogen fertilizer input, but its efficiency varies under fluctuating soil conditions and resources. The nitrogen-related phosphotransferase system (PTSNtr) consisting of PtsP, PtsO, and PtsN is required for optimal nodulation and nitrogen fixation efficiency of the broad-host-range Sinorhizobium fredii CCBAU45436 associated with diverse legumes, though the underlying mechanisms remain elusive. This work characterizes the PtsN-KdpDE-KdpFABC pathway that contributes to low potassium adaptation and competitive nodulation of CCBAU45436. Among three PtsN, PtsN1 is the major functional homolog. The unphosphorylated PtsN1 binds the sensory kinase KdpD through a non-canonical interaction with the GAF domain of KdpD, while the region covering HisKA-HATPase domains mediates the interaction of KdpD with the response regulator KdpE. KdpE directly activates the kdpFABC operon encoding the conserved high-affinity potassium uptake system. Disruption of this signaling pathway leads to reduced nodule number, nodule occupancy, and low potassium adaptation ability, but without notable effects on rhizoplane colonization. The induction of key nodulation genes NIN and ENOD40 in host roots during early symbiotic interactions is impaired when inoculating the kdpBC mutant that shows delayed nodulation. The nodulation defect of the kdpBC mutant can be rescued by supplying replete potassium. Potassium is actively consumed by both prokaryotes and eukaryotes, and components of the PTSNtr-KdpDE-KdpFABC pathway are widely conserved in bacteria, highlighting the global importance of this pathway in bacteria-host interactions. IMPORTANCE In all ecological niches, potassium is actively consumed by diverse prokaryotes and their interacting eukaryote hosts. It is only just emerging that potassium is a key player in host-pathogen interactions, and the role of potassium in mutualistic interactions remains largely unknown. This work is focused on the mutualistic symbiosis between rhizobia and legumes. We report that the nitrogen-related phosphotransferase system PTSNtr, the two-component system KdpDE, and the high-affinity potassium uptake system KdpFABC constitute a pathway that is important for low potassium adaptation and optimal nodulation of rhizobia. Given the widely conserved PTSNtr, KdpDE, and KdpFABC in bacteria and increasing knowledge on microbiome for various niches, the PTSNtr-KdpDE-KdpFABC pathway can be globally important in the biosphere.


Assuntos
Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato , Rhizobium , Sinorhizobium fredii , Regulação Bacteriana da Expressão Gênica , Nitrogênio/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Fosforilação , Fosfotransferases/genética , Potássio/metabolismo , Rhizobium/metabolismo , Sinorhizobium fredii/metabolismo , Simbiose
11.
ISME J ; 16(3): 738-749, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34584215

RESUMO

Foreign AT-rich genes drive bacterial adaptation to new niches while challenging the existing regulation network. Here we report that MucR, a conserved regulator in α-proteobacteria, balances adaptation and regulatory integrity in Sinorhizobium fredii, a facultative microsymbiont of legumes. Chromatin immunoprecipitation sequencing coupled with transcriptomic data reveal that average transcription levels of both target and non-target genes, under free-living and symbiotic conditions, increase with their conservation levels. Targets involved in environmental adaptation and symbiosis belong to genus or species core and can be repressed or activated by MucR in a condition-dependent manner, implying regulatory integrations. However, most targets are enriched in strain-specific genes of lower expression levels and higher AT%. Within each conservation levels, targets have higher AT% and average transcription levels than non-target genes and can be further up-regulated in the mucR mutant. This is consistent with higher AT% of spacers between -35 and -10 elements of promoters for target genes, which enhances transcription. The MucR recruitment level linearly increases with AT% and the number of a flexible pattern (with periodic repeats of Ts) of target sequences. Collectively, MucR directly represses AT-rich foreign genes with predisposed high transcription potential while progressive erosions of its target sites facilitate regulatory integrations of foreign genes.


Assuntos
Alphaproteobacteria , Regulação Bacteriana da Expressão Gênica , Alphaproteobacteria/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Simbiose/genética , Zinco/metabolismo
13.
mBio ; 12(5): e0119221, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34700374

RESUMO

The ubiquitous bacterial second messenger c-di-GMP is intensively studied in pathogens but less so in mutualistic bacteria. Here, we report a genome-wide investigation of functional diguanylate cyclases (DGCs) synthesizing c-di-GMP from two molecules of GTP in Sinorhizobium fredii CCBAU45436, a facultative microsymbiont fixing nitrogen in nodules of diverse legumes, including soybean. Among 25 proteins harboring a putative GGDEF domain catalyzing the biosynthesis of c-di-GMP, eight functional DGCs were identified by heterogenous expression in Escherichia coli in a Congo red binding assay. This screening result was further verified by in vitro enzymatic assay with purified full proteins or the GGDEF domains from representative functional and nonfunctional DGCs. In the same in vitro assay, a functional EAL domain catalyzing the degradation of c-di-GMP into pGpG was identified in a protein that has an inactive GGDEF domain but with an active phosphodiesterase (PDE) function. The identified functional DGCs generally exhibited low transcription levels in soybean nodules compared to free-living cultures, as revealed in transcriptomes. An engineered upregulation of a functional DGC in nodules led to a significant increase of c-di-GMP level and symbiotic defects, which were not observed when a functional EAL domain was upregulated at the same level. Further transcriptional analysis and gel shift assay demonstrated that these functional DGCs were all transcriptionally repressed in nodules by a global pleiotropic regulator, MucR1, that is essential in Sinorhizobium-soybean symbiosis. These findings shed novel insights onto the systematic regulation of c-di-GMP biosynthesis in mutualistic symbiosis. IMPORTANCE The ubiquitous second messenger c-di-GMP is well-known for its role in biofilm formation and host adaptation of pathogens, whereas it is less investigated in mutualistic symbioses. Here, we reveal a cocktail of eight functional diguanylate cyclases (DGCs) catalyzing the biosynthesis of c-di-GMP in a broad-host-range Sinorhizobium that can establish nitrogen-fixing nodules on soybean and many other legumes. These functional DGCs are generally transcribed at low levels in soybean nodules compared to free-living conditions. The engineered nodule-specific upregulation of DGC can elevate the c-di-GMP level and cause symbiotic defects, while the upregulation of a phosphodiesterase that quenches c-di-GMP has no detectable symbiotic defects. Moreover, eight functional DGCs located on two different replicons are all directly repressed in nodules by a global silencer, MucR1, that is essential for Sinorhizobium-soybean symbiosis. These findings represent a novel mechanism of a strategic regulation of the c-di-GMP biosynthesis arsenal in prokaryote-eukaryote interactions.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Glycine max/microbiologia , Fósforo-Oxigênio Liases/genética , Sinorhizobium/genética , Simbiose/genética , Transcrição Gênica , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/classificação , Proteínas de Escherichia coli/metabolismo , Perfilação da Expressão Gênica , Fixação de Nitrogênio/genética , Fósforo-Oxigênio Liases/biossíntese , Fósforo-Oxigênio Liases/classificação , Fósforo-Oxigênio Liases/metabolismo , Sinorhizobium/fisiologia
14.
Methods Mol Biol ; 2242: 45-58, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33961216

RESUMO

Prokaryotes harbor a various proportion of accessory genes in their genomes. The integration of accessory functions with the core regulation network is critical for environmental adaptation, particularly considering a theoretically unlimited number of niches on the earth for microorganisms. Comparative genomics can reveal a co-occurrence pattern between a subset of accessory genes (or variations in core genes) and an adaptation trait, while comparative transcriptomics can further uncover whether a coordinated regulation of gene expression is involved. In this chapter, we introduce a protocol for weighted gene coexpression network construction by using well-developed open source tools, and a further application of such a network in comparative analysis of bacterial core and accessory genes.


Assuntos
DNA Bacteriano/genética , Redes Reguladoras de Genes , Genoma Bacteriano , Genômica , Sinorhizobium fredii/genética , Bases de Dados Genéticas , Regulação Bacteriana da Expressão Gênica , Filogenia , Projetos de Pesquisa , Fluxo de Trabalho
15.
mSystems ; 6(2)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33850043

RESUMO

The interkingdom coevolution innovated the rhizobium-legume symbiosis. The application of this nitrogen-fixing system in sustainable agriculture is usually impeded by incompatible interactions between partners. However, the progressive evolution of rhizobium-legume compatibility remains elusive. In this work, deletions of rhcV encoding a structural component of the type three secretion system allow related Sinorhizobium strains to nodulate a previously incompatible soybean cultivar (Glycine max). These rhcV mutants show low to medium to high symbiotic efficiency on the same cultivated soybean while being indistinguishable on wild soybean plants (Glycine soja). The dual pantranscriptomics reveals nodule-specific activation of core symbiosis genes of Sinorhizobium and Glycine genes associated with genome duplication events along the chronogram. Unexpectedly, symbiotic efficiency is in line with lineage-dependent transcriptional profiles of core pathways which predate the diversification of Fabaceae and Sinorhizobium. This is supported by further physiological and biochemical experiments. Particularly, low-efficiency nodules show disordered antioxidant activity and low-energy status, which restrict nitrogen fixation activity. Collectively, the ancient core pathways play a crucial role in optimizing the function of later-evolved mutualistic arsenals in the rhizobium-legume coevolution.IMPORTANCE Significant roles of complex extracellular microbiota in environmental adaptation of eukaryotes in ever-changing circumstances have been revealed. Given the intracellular infection ability, facultative endosymbionts can be considered pioneers within complex extracellular microbiota and are ideal organisms for understanding the early stage of interkingdom adaptation. This work reveals that the later innovation of key symbiotic arsenals and the lineage-specific network rewiring in ancient core pathways, predating the divergence of legumes and rhizobia, underline the progressive evolution of rhizobium-legume compatibility. This insight not only is significant for improving the application benefits of rhizobial inoculants in sustainable agriculture but also advances our general understanding of the interkingdom coevolution which is theoretically explored by all host-microbiota interactions.

16.
Genes (Basel) ; 12(1)2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477547

RESUMO

Bacteria currently included in Rhizobium leguminosarum are too diverse to be considered a single species, so we can refer to this as a species complex (the Rlc). We have found 429 publicly available genome sequences that fall within the Rlc and these show that the Rlc is a distinct entity, well separated from other species in the genus. Its sister taxon is R. anhuiense. We constructed a phylogeny based on concatenated sequences of 120 universal (core) genes, and calculated pairwise average nucleotide identity (ANI) between all genomes. From these analyses, we concluded that the Rlc includes 18 distinct genospecies, plus 7 unique strains that are not placed in these genospecies. Each genospecies is separated by a distinct gap in ANI values, usually at approximately 96% ANI, implying that it is a 'natural' unit. Five of the genospecies include the type strains of named species: R. laguerreae, R. sophorae, R. ruizarguesonis, "R. indicum" and R. leguminosarum itself. The 16S ribosomal RNA sequence is remarkably diverse within the Rlc, but does not distinguish the genospecies. Partial sequences of housekeeping genes, which have frequently been used to characterize isolate collections, can mostly be assigned unambiguously to a genospecies, but alleles within a genospecies do not always form a clade, so single genes are not a reliable guide to the true phylogeny of the strains. We conclude that access to a large number of genome sequences is a powerful tool for characterizing the diversity of bacteria, and that taxonomic conclusions should be based on all available genome sequences, not just those of type strains.


Assuntos
DNA Bacteriano/genética , Genoma Bacteriano , Filogenia , Rhizobium leguminosarum/classificação , Rhizobium leguminosarum/genética , Análise de Sequência de DNA
17.
Microb Biotechnol ; 14(2): 535-550, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33166080

RESUMO

Conservation tillage in conjunction with straw mulching is a sustainable agricultural approach. However, straw mulching reduces the soil temperature, inhibits early maize growth and reduces grain yield in cold regions. To address this problem, we investigated the effects of inoculation of plant growth-promoting rhizobacteria (PGPR) on maize growth and rhizosphere microbial communities under conservation tillage in Northeast China. The PGPR strains Sinorhizobium sp. A15, Bacillus sp. A28, Sphingomonas sp. A55 and Enterobacter sp. P24 were isolated from the maize rhizosphere in the same area and inoculated separately. Inoculation of these strains significantly enhanced maize growth, and the strains A15, A28 and A55 significantly increased grain yield by as much as 22%-29%. Real-time quantitative PCR and high-throughput sequencing showed that separate inoculation with the four strains increased the abundance and species richness of bacteria in the maize rhizosphere. Notably, the relative abundance of Acidobacteria_Subgroup_6, Chloroflexi_KD4-96, and Verrucomicrobiae at the class level and Mucilaginibacter at the genus level were positively correlated with maize biomass and yield. Inoculation with PGPR shows potential for improvement of maize production under conservation tillage in cold regions by regulating the rhizosphere bacterial community structure and by direct stimulation of plant growth.


Assuntos
Microbiota , Rizosfera , China , Raízes de Plantas , Solo , Microbiologia do Solo , Zea mays
18.
mBio ; 13(1): e0290021, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35130720

RESUMO

Iron homeostasis is strictly regulated in cellular organisms. The Rhizobiales order enriched with symbiotic and pathogenic bacteria has evolved a lineage-specific regulator, RirA, responding to iron fluctuations. However, the regulatory role of RirA in bacterium-host interactions remains largely unknown. Here, we report that RirA is essential for mutualistic interactions of Sinorhizobium fredii with its legume hosts by repressing a gene cluster directing biosynthesis and transport of petrobactin siderophore. Genes encoding an inner membrane ABC transporter (fat) and the biosynthetic machinery (asb) of petrobactin siderophore are sporadically distributed in Gram-positive and Gram-negative bacteria. An outer membrane siderophore receptor gene (fprA) was naturally assembled with asb and fat, forming a long polycistron in S. fredii. An indigenous regulation cascade harboring an inner membrane protease (RseP), a sigma factor (FecI), and its anti-sigma protein (FecR) were involved in direct activation of the fprA-asb-fat polycistron. Operons harboring fecI and fprA-asb-fat, and those encoding the indigenous TonB-ExbB-ExbD complex delivering energy to the outer membrane transport activity, were directly repressed by RirA under iron-replete conditions. The rirA deletion led to upregulation of these operons and iron overload in nodules, impaired intracellular persistence, and symbiotic nitrogen fixation of rhizobia. Mutualistic defects of the rirA mutant can be rescued by blocking activities of this naturally "synthetic" circuit for siderophore biosynthesis and transport. These findings not only are significant for understanding iron homeostasis of mutualistic interactions but also provide insights into assembly and integration of foreign machineries for biosynthesis and transport of siderophores, horizontal transfer of which is selected in microbiota. IMPORTANCE Iron is a public good explored by both eukaryotes and prokaryotes. The abundant ferric form is insoluble under neutral and basic pH conditions, and many bacteria secrete siderophores forming soluble ferric siderophore complexes, which can be then taken up by specific receptors and transporters. Siderophore biosynthesis and uptake machineries can be horizontally transferred among bacteria in nature. Despite increasing attention on the importance of siderophores in host-microbiota interactions, the regulatory integration process of transferred siderophore biosynthesis and transport genes is poorly understood in an evolutionary context. By focusing on the mutualistic rhizobium-legume symbiosis, here, we report how a naturally synthetic foreign siderophore gene cluster was integrated with the rhizobial indigenous regulation cascade, which is essential for maintaining mutualistic interactions.


Assuntos
Fabaceae , Rhizobium , Sinorhizobium , Sideróforos/metabolismo , Fabaceae/microbiologia , Sinorhizobium/metabolismo , Simbiose/genética , Antibacterianos , Proteínas de Bactérias/metabolismo , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/metabolismo , Ferro/metabolismo , Bactérias/metabolismo , Proteínas de Membrana Transportadoras , Verduras , Rhizobium/metabolismo
19.
Mol Plant ; 14(3): 503-516, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33309942

RESUMO

Plants establish symbioses with mutualistic fungi, such as arbuscular mycorrhizal (AM) fungi, and bacteria, such as rhizobia, to exchange key nutrients and thrive. Plants and symbionts have coevolved and represent vital components of terrestrial ecosystems. Plants employ an ancestral AM signaling pathway to establish intracellular symbioses, including the legume-rhizobia symbiosis, in their roots. Nevertheless, the relationship between the AM and rhizobial symbioses in native soil is poorly understood. Here, we examined how these distinct symbioses affect root-associated bacterial communities in Medicago truncatula by performing quantitative microbiota profiling (QMP) of 16S rRNA genes. We found that M. truncatula mutants that cannot establish AM or rhizobia symbiosis have an altered microbial load (quantitative abundance) in the rhizosphere and roots, and in particular that AM symbiosis is required to assemble a normal quantitative root-associated microbiota in native soil. Moreover, quantitative microbial co-abundance network analyses revealed that AM symbiosis affects Rhizobiales hubs among plant microbiota and benefits the plant holobiont. Through QMP of rhizobial rpoB and AM fungal SSU rRNA genes, we revealed a new layer of interaction whereby AM symbiosis promotes rhizobia accumulation in the rhizosphere of M. truncatula. We further showed that AM symbiosis-conditioned microbial communities within the M. truncatula rhizosphere could promote nodulation in different legume plants in native soil. Given that the AM and rhizobial symbioses are critical for crop growth, our findings might inform strategies to improve agricultural management. Moreover, our work sheds light on the co-evolution of these intracellular symbioses during plant adaptation to native soil conditions.


Assuntos
Micorrizas/fisiologia , Microbiota/fisiologia , RNA Ribossômico 16S/genética , Rhizobium/fisiologia , Rizosfera , Simbiose/genética , Simbiose/fisiologia
20.
Comput Struct Biotechnol J ; 18: 3623-3631, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304460

RESUMO

The MucR/Ros family protein is conserved in alpha-proteobacteria and characterized by its zinc-finger motif that has been proposed as the ancestral domain from which the eukaryotic C2H2 zinc-finger structure evolved. In the past decades, accumulated evidences have revealed MucR as a pleiotropic transcriptional regulator that integrating multiple functions such as virulence, symbiosis, cell cycle and various physiological processes. Scattered reports indicate that MucR mainly acts as a repressor, through oligomerization and binding to multiple sites of AT-rich target promoters. The N-terminal region and zinc-finger bearing C-terminal region of MucR mediate oligomerization and DNA-binding, respectively. These features are convergent to those of xenogeneic silencers such as H-NS, MvaT, Lsr2 and Rok, which are mainly found in other lineages. Phylogenetic analysis of MucR homologs suggests an ancestral origin of MucR in alpha- and delta-proteobacteria. Multiple independent duplication and lateral gene transfer events contribute to the diversity and phyletic distribution of MucR. Finally, we posed questions which remain unexplored regarding the putative roles of MucR as a xenogeneic silencer and a general manager in balancing adaptation and regulatory integration in the pangenome context.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...