Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuroendocrinology ; 114(5): 468-482, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38194942

RESUMO

INTRODUCTION: Lipocalin 2 (Lcn2) is a key factor in appetite suppression. However, the effect of Lcn2 on appetite in terms of sex differences has not been thoroughly studied. METHODS: Young (3-month-old) whole-body Lcn2 knockout (Lcn2-/-) mice were fed a normal diet (ND) or high-fat diet (HFD) for 8 weeks to investigate obesity, food intake, serum metabolism, hepatic lipid metabolism, and regulation of gastrointestinal hormones. RESULTS: Lcn2 deficiency significantly increased the body weight and food intake of male mice when fed ND instead of HFD and females when fed HFD but not ND. Compared to wild-type (WT) male mice, the adiponectin level and phosphorylated form of adenosine 5'-monophosphate-activated protein kinase (AMPK) in the hypothalamus were both increased in ND-fed Lcn2-/- male mice but decreased in HFD-fed Lcn2-/- male mice. However, in female mice, adiponectin and its energy metabolism pathway were not altered. Instead, estradiol was found to be substantially higher in ND-fed Lcn2-/- female mice and substantially lower in HFD-fed Lcn2-/- female mice compared with WT female mice. Estradiol alteration also caused similar changes in ERα in the hypothalamus, leading to changes in the PI3K/AKT energy metabolism pathway. It suggested that the increased appetite caused by Lcn2 deficiency in male mice may be due to increased adiponectin expression and promotion of AMPK phosphorylation, while in female mice it may be related to the decrease of circulating estradiol and the inhibition of the hypothalamic ERα/PI3K/AKT energy metabolism pathway. CONCLUSION: Lcn2 plays in a highly sex-specific manner in the regulation of appetite in young mice.


Assuntos
Regulação do Apetite , Dieta Hiperlipídica , Lipocalina-2 , Camundongos Knockout , Obesidade , Caracteres Sexuais , Animais , Lipocalina-2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Masculino , Feminino , Obesidade/metabolismo , Camundongos , Regulação do Apetite/fisiologia , Camundongos Endogâmicos C57BL , Hipotálamo/metabolismo , Adiponectina/metabolismo , Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Apetite/fisiologia
2.
Biomolecules ; 13(8)2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37627331

RESUMO

Diabetic nephropathy (DN) is one of the most devastating diabetic microvascular complications. It has previously been observed that iron metabolism levels are abnormal in diabetic patients. However, the mechanism by which iron metabolism levels affect DN is poorly understood. This study was designed to evaluate the role of iron-chelator deferoxamine (DFO) in the improvement of DN. Here, we established a DN rat model induced by diets high in carbohydrates and fat and streptozotocin (STZ) injection. Our data demonstrated that DFO treatment for three weeks greatly attenuated renal dysfunction as evidenced by decreased levels of urinary albumin, blood urea nitrogen, and serum creatinine, which were elevated in DN rats. Histopathological observations showed that DFO treatment improved the renal structures of DN rats and preserved podocyte integrity by preventing the decrease of transcripts of nephrin and podocin. In addition, DFO treatment reduced the overexpression of fibronectin 1, collagen I, IL-1ß, NF-κB, and MCP-1 in DN rats, as well as inflammatory cell infiltrates and collagenous fibrosis. Taken together, our findings unveiled that iron chelation via DFO injection had a protective impact on DN by alleviating inflammation and fibrosis, and that it could be a potential therapeutic strategy for DN.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Animais , Ratos , Nefropatias Diabéticas/tratamento farmacológico , Desferroxamina/farmacologia , Inflamação/tratamento farmacológico , Fibrose , Quelantes de Ferro/farmacologia , Quelantes de Ferro/uso terapêutico , Ferro
3.
Int J Mol Med ; 51(1)2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36484371

RESUMO

Disruption of iron homeostasis is associated with multiple diseases. It has been found that patients with genetic iron overload develop massive iron deposition in the pancreas. However, few studies have focused on the effect of secondary iron overload on the pancreas. The objective of the present study was to investigate the pathogenic consequences of secondary iron overload in mice. An iron overload mouse model was constructed by intraperitoneal injection of 120 mg/kg body weight of iron dextran every other week for 12 weeks. Iron deposition, immunocyte infiltration, fibrosis, oxidative stress and ferroptosis were assessed using Prussian blue staining, immunohistochemical analysis, Masson staining, Sirius red staining, RT­qPCR analysis and western blot analysis. It was found that iron­overloaded mice showed pancreatic iron overload, together with elevated gene expression of the iron storage factor ferritin H, and decreased expression of the iron transportation mediator divalent metal transporter 1, ferroportin 1 and transferrin receptor. Iron­overloaded mice developed mild pancreatitis with increased serum amylase and lipase activities, as well as elevated gene expression levels of pro­inflammatory cytokines, including interleukin (IL)­1ß, IL­6 and inducible nitric oxide synthase. Acinar atrophy, massive immunocyte infiltration and pancreatic fibrosis were noted in the iron­overloaded mice. As an underlying mechanism, iron­overloaded mice showed increased pancreatic oxidative stress, with an elevated malondialdehyde level, and decreased SOD and glutathione peroxidase activity. Furthermore, iron overload led to ferroptosis with promoted expression of cytochrome c oxidase subunit II, and decreased transcripts of glutathione peroxidase 4 and solute carrier family 7 member 11. These results provided evidence that multiple intraperitoneal injections of iron dextran in mice lead to iron overload­induced chronic pancreatitis, which suggested that secondary iron overload is a risk factor for pancreatitis and highlights the importance of iron in maintaining the normal functions of the pancreas.


Assuntos
Sobrecarga de Ferro , Pancreatite Crônica , Camundongos , Animais , Células Acinares , Dextranos , Sobrecarga de Ferro/complicações , Ferro
4.
Animals (Basel) ; 12(16)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36009656

RESUMO

Iron homeostasis disorder is associated with the imbalance of lipid metabolism, while the specific interaction remains unclear. In the present study, we investigated the effect of a high-iron diet on lipid metabolism in mice. The C57BL/6 mice were fed with a normal diet (WT) or a high-iron diet (WT + Fe) for 12 weeks. We found that mice in the WT + Fe group showed a significant decrease in body weight gain, body fat and lipid accumulation of liver when compared with mice in the WT group. Accordingly, serum total cholesterol and triglyceride levels were both reduced in mice with a high-iron diet. Moreover, mice in the WT + Fe group exhibited a significant decrease in expression of genes regulating adipogenesis and adipocyte differentiation, and a significant increase in expression of fat hydrolysis enzyme genes in both liver and adipose tissues, which was consistent with their dramatic reduction in adipocyte cell size. In addition, a high-iron diet decreased the relative abundance of beneficial bacteria (Akkermansia, Bifidobacterium and Lactobacillus) and increased the relative abundance of pathogenic bacteria (Romboutsia and Erysipelatoclostridium). Thus, our research revealed that a high-iron diet reduced lipid deposition by inhibiting adipogenesis and promoting lipolysis. Altered gut microbial composition induced by a high-iron diet may not play a critical role in regulating lipid metabolism, but might cause unwanted side effects such as intestinal inflammation and damaged villi morphology at the intestinal host-microbe interface. These findings provide new insights into the relationship among iron, lipid metabolism and gut microbiota.

5.
Biomed Pharmacother ; 144: 112253, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34607106

RESUMO

Iron supplementation is necessary for the treatment of anemia, one of the most frequent complications in inflammatory bowel disease (IBD). However, oral iron supplementation leads to an exacerbation of intestinal inflammation. Gut barrier plays a key role in the pathogenesis of IBD. The aim of this study was to characterize the interrelationship between systemic iron, intestinal barrier and the development of intestinal inflammation in a dextran sulfate sodium (DSS) induced experimental colitis mice model. We found that DSS-treated mice developed severe inflammation of colon, but became much healthy when intraperitoneal injection with iron. Iron supplementation alleviated colonic and systemic inflammation by lower histological scores, restorative morphology of colonic villi, and reduced expression of pro-inflammatory cytokines. Moreover, intraperitoneal supplementation of iron enhanced intestinal barrier function by upregulating the colonic expressions of tight junction proteins, restoring intestinal immune homeostasis by regulating immune cell infiltration and T lymphocyte subsets, and increasing mucous secretion of goblet cells in the colon. High-throughput sequencing of fecal 16 S rRNA showed that iron injection significantly increased the relative abundance of Bacteroidetes, which was suppressed in the gut microbiota of DSS-induced colitis mice. These results provided evidences supporting the protective effects of systemic iron repletion by intraperitoneal injection of iron on intestinal barrier functions. The finding highlights a novel approach for the treatment of IBD with iron injection therapy.


Assuntos
Colite/tratamento farmacológico , Colo/efeitos dos fármacos , Suplementos Nutricionais , Células Caliciformes/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Complexo Ferro-Dextran/administração & dosagem , Proteínas de Junções Íntimas/metabolismo , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Colite/induzido quimicamente , Colite/metabolismo , Colite/microbiologia , Colo/metabolismo , Colo/microbiologia , Sulfato de Dextrana , Modelos Animais de Doenças , Disbiose , Microbioma Gastrointestinal/efeitos dos fármacos , Células Caliciformes/metabolismo , Células Caliciformes/microbiologia , Injeções Intraperitoneais , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Masculino , Camundongos Endogâmicos C57BL , Permeabilidade , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Junções Íntimas/microbiologia , Regulação para Cima
6.
Se Pu ; 36(4): 408-412, 2018 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-30136526

RESUMO

A method was established for detecting the ingredients of horse, ox, sheep, pig, camel and deer skin in colla corii asini using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS).Theoretical marker peptides were selected by comparing the collagen sequences in the skins of donkeys, horses, oxen, sheep, pigs, camels, and deer.Marker peptides were identified by protease cutting techniques and high resolution mass spectrometry and then analyzed by UPLC-MS/MS.The separation was performed on a UPLC system with a BEH C18 column via the gradient elution of acetonitrile containing 0.1%(v/v) acetic acid and water containing 0.1%(v/v) acetic acid.The marker peptides were identified in the modes of electrospray positive ionization (ESI+) and multiple reaction monitoring (MRM).The marker peptides for the horse, ox, sheep, pig and camel skin were detected in 15 samples.The method is simple, highly reproducible, and suitable for the identification of mixed skin ingredients in colla corii asini.It has been successfully used to detect the authenticity of colla corii asini.


Assuntos
Gelatina/análise , Peptídeos/análise , Pele/química , Animais , Biomarcadores/análise , Camelus , Bovinos , Cromatografia Líquida de Alta Pressão , Cervos , Cavalos , Ovinos , Suínos , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA