Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2403645, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720473

RESUMO

High spatial-resolution detection is essential for biomedical applications and human-machine interaction. However, as the sensor array density increases, the miniaturization will lead to interference between adjacent units and deterioration in sensing performance. Here, inspired by the cochlea's sensing structure, a high-density flexible pressure sensor array featuring with suspended sensing membrane with sensitivity-enhanced customized channels is presented for crosstalk-free and high-resolution detection. By imitating the basilar membrane attached to spiral ligaments, a sensing membrane is fixed onto a high-stiffness substrate with cavities, forming a stable braced isolation to provide an excellent crosstalk-free capability (crosstalk coefficient: 47.24 dB) with high-density integration (100 units within 1 cm2). Similar to the opening of ion channels in hair cells, the wedge-type expansion of the embedded cracks introduced by stress concentration structures enables a high sensitivity (0.19 kPa-1) and a large measuring range (400 kPa). Finally, it demonstrates promising applications in distributed displays and the condition monitoring of medical-surgical intubation.

2.
Research (Wash D C) ; 6: 0248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37840768

RESUMO

Improving droplet velocity as much as possible is considered as the key to improving both printing speed and printing distance of the piezoelectric drop-on-demand inkjet printing technology. There are 3 tough and contradictory issues that need to be addressed simultaneously, namely, the actuation pressure of the piezoelectric printhead, satellite droplets, and the air resistance, which seems almost impossible to achieve with classical methods. Herein, a novel solution is introduced. By modulating the positive crosstalk effect inside and outside the printhead, self-tuning can be achieved, including self-reinforcing of the actuation pressure, self-restraining of satellite droplets, and self-weakening of the air resistance, thereby greatly improving droplet velocity. Based on these mechanisms, waveform design methods for different inks and printheads are investigated. The results demonstrate that monodisperse droplet jetting with a maximum velocity of 27.53 m/s can be achieved, reaching 3 to 5 times that of the classical method (5 to 8 m/s). Correspondingly, the printing speed and distance can be simultaneously increased by almost 10 times, demonstrating an ability of direct printing on irregular surface. Meanwhile, the compatibility of ink materials is expanded, as the Ohnesorge number and the viscosity of printable inks for the printhead used are increased from 0.36-0.72 to 0.03-1.18 and from 10-12 cp to 1-40.3 cp, respectively, even breaking the traditional limitations of the piezoelectric printing technology (Ohnesorge number of 0.1 to 1; viscosity of 1 to 25 cp). All the above provide a new perspective for improving droplet velocity and may even offer a game-changing choice for expanding the boundaries of the piezoelectric drop-on-demand inkjet printing technology.

3.
Sci Adv ; 9(43): eadj3133, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37889978

RESUMO

Perching-and-takeoff robot can effectively economize onboard power and achieve long endurance. However, dynamic perching on moving targets for a perching-and-takeoff robot is still challenging due to less autonomy to dynamically land, tremendous impact during landing, and weak contact adaptability to perching surfaces. Here, a self-sensing, impact-resistant, and contact-adaptable perching-and-takeoff robot based on all-in-one electrically active smart adhesives is proposed to reversibly perch on moving/static dry/wet surfaces and economize onboard energy. Thereinto, attachment structures with discrete pillars have contact adaptability on different dry/wet surfaces, stable adhesion, and anti-rebound; sandwich-like artificial muscles lower weight, enhance damping, simplify control, and achieve fast adhesion switching (on-off ratio approaching ∞ in several seconds); and the flexible pressure (0.204% per kilopascal)-and-deformation (force resolution, <2.5 millinewton) sensor enables the robot's autonomy. Thus, the perching-and-takeoff robot equipped with electrically active smart adhesives exhibits tremendous advantages of soft materials over their rigid counterparts and promising application prospect of dynamic perching on moving targets.

4.
Langmuir ; 39(40): 14474-14486, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37774416

RESUMO

The efficient and safe manipulation of precision materials (such as thin and fragile wafers and glass substrates for flat panel displays) under complicated operating conditions with vacuum, high temperature, and low preload stress is an essential task for pan-semiconductor production lines. However, current manipulation approaches such as suction-based gripping (invalid under vacuum conditions) and mechanical clamping (stress concentration at the contact interfaces) are challenged to satisfy such complex requirements. Herein, fluororubber (FKM) is employed as an adhesive material to overcome such challenges due to its outstanding thermostability, availability under vacuum environments, and high adhesion at low contacting preloads. However, the adhesion of the FKM film decreases significantly with increasing temperature (decrease by 84.83% at 245 °C). Consequently, a micropatterned FKM-based dry adhesive (MFA) fabricated by laser etching is developed. The experimental results reveal that MFAs are efficient in restraining adhesion attenuation at high temperatures (minimum 15% decrease at 245 °C). The numerical analysis and in situ observations reveal the mechanism of the MFAs in restraining adhesion attenuation. The contamination-free and high adhesion at low contacting preload of MFAs can be of great interest in pan-semiconductor production lines that require complicated operating conditions on temperature, vacuum, and interface stress.

5.
Adv Sci (Weinh) ; 10(30): e2303874, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37688358

RESUMO

The implementation of complex, high-precision optical devices or systems, which have vital applications in the aerospace, medical, and military fields, requires the ability to reliably manipulate and assemble optical elements. However, this is a challenging task as these optical elements require contamination-free and damage-free manipulation and come in a variety of sizes and shapes. Here, a smart, contact-adaptive adhesive based on magnetic actuation is developed to address this challenge. Specifically, the surface bio-inspired adhesives made of fluororubber facilitate contamination-free and damage-free adhesion. The stiffness modulation of packaged magnetorheological grease based on the magnetorheological effect endows the smart adhesive with a high conformability to the optical elements in the soft state, a high grip force in the stiff state, and the ability to quickly release the optical elements in the recovered soft state. The smart adhesive provides a versatile solution for reliably and quickly manipulating and assembling multiscale optical elements with planar or complex 3D shapes without causing surface contamination or damage. These extraordinary capabilities are demonstrated by the manipulation and assembly of various optical elements, such as convex/concave/ball lenses and extremely complex-shaped light guide plates. The proposed smart adhesive is a promising candidate for conventional optical element manipulation technologies.

6.
Adv Sci (Weinh) ; 10(21): e2302512, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37150863

RESUMO

For dry adhesive-based operation, highly adaptable and stable manipulation is important but also challenging, especially for irregular objects with complex surface (such as abrupt profile and acute projection) under vibration-inducing environments. Here, a multi-scale adhesive structure, with mechanically isolated energy-absorbing backing, based on the synergistic action of microscale contact end (seta), mesoscale supporting layer (lamella), and macroscopic backing (muscle tissues) of gecko's sole, is proposed. Top layer of mushroom-like micro tips provides dry adhesion via mimicking gecko's seta, and bottom layer of physical cuts and porous feature achieves the interfacial mechanical decoupling and crack inhibition via mimicking the non-continuous distributing of lamella and compliance of muscle. The proposed dry adhesive exhibits excellent adaptable adhesion to various objects with curved or irregular surfaces, even for that with abrupt contours, as well as an amazing stable anti-vibration ability, opening a new avenue for the development of dry adhesive-based device or system.

7.
Mater Horiz ; 10(8): 3140-3152, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37222555

RESUMO

The voltage outputs of flexible piezoelectric films after bending deformation have always been limited by two factors, including the incompatible polarization direction with bending strain and the interfacial fatigue failure between the piezoelectric films and the electrode layers, largely hindering the applications in wearable electronics. Herein, we demonstrate a new piezoelectric film design, where 3D-architectured microelectrodes are fabricated inside a piezoelectric film by electrowetting-assisted printing of conductive nano-ink into the pre-formed meshed microchannels in the piezoelectric film. The 3D architectures increase the piezoelectric output of a typical P(VDF-TrFE) film by more than 7 fold compared with the conventional planar design at the same bending radius, and, more importantly, decrease the output attenuation down to only 5.3% after 10 000 bending cycles, less than one third of that for the conventional design. The dependence of piezoelectric outputs on feature sizes of 3D microelectrodes was investigated numerically and experimentally, providing a route for optimizing the 3D architecture design. Different composite piezoelectric films with internal 3D-architectured microelectrodes were fabricated, exhibiting improved piezoelectric outputs under bending deformations, demonstrating that our printing methods could have broad applications in various fields. The fabricated piezoelectric films, worn on human fingers, are used for remotely controlling the robot hand gestures by human-machine interaction; furthermore, the fabricated piezoelectric patches are used to successfully sense the pressure distribution by integrating with spacer arrays to convert the pressing movement into bending deformation, demonstrating the enormous potential of our piezoelectric films in practical applications.

8.
Sci Adv ; 9(11): eadf4051, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36921055

RESUMO

Artificial dry adhesives have exhibited great potential in the field of robotics. However, there is still a wide gap between bioinspired adhesives and living tissues, especially regarding the surface adaptability and switching ability of attachment/detachment. Here, we propose a sensing-triggered stiffness-tunable smart adhesive material, combining the functions of muscle tissues and sensing nerves rather than traditional biomimetic adhesive strategy that only focuses on structural geometry. Authorized by real-time perception of the interface contact state, conformal contact, shape locking, and active releasing are achieved by adjusting the stiffness based on the magnetorheological effect. Because of the fast switching of the magnetic field, a millisecond-level attachment/detachment response is successfully achieved, breaking the bottleneck of adhesive materials for high-speed manipulation. The innovative design can be applied to any toe's surface structure, opening up a previously unknown avenue for the development of adhesive materials.

9.
Small ; 19(33): e2301533, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36970781

RESUMO

Laminated graphene film has great potential in compact high-power capacitive energy storage owing to the high bulk density and opened architecture. However, the high-power capability is usually limited by tortuous cross-layer ion diffusion. Herein, microcrack arrays are fabricated in graphene films as fast ion diffusion channels, converting tortuous diffusion into straightforward diffusion while maintaining a high bulk density of 0.92 g cm-3 . Films with optimized microcrack arrays exhibit sixfold improved ion diffusion coefficient and high volumetric capacitance of 221 F cm-3 (240 F g-1 ), representing a critical breakthrough in optimizing ion diffusion toward compact energy storage. This microcrack design is also efficient for signal filtering. Microcracked graphene-based supercapacitor with 30 µg cm-2  mass loading exhibits characteristic frequency up to 200 Hz with voltage window up to 4 V, showing high promise for compact, high-capacitance alternating current (AC) filtering. Moreover, a renewable energy system is conducted using microcrack-arrayed graphene supercapacitors as filter-capacitor and energy buffer, filtering and storing the 50 Hz AC electricity from a wind generator into the constant direct current, stably powering 74 LEDs, demonstrating enormous potential in practical applications. More importantly, this microcracking approach is roll-to-roll producible, which is cost-effective and highly promising for large-scale manufacture.

10.
Mater Horiz ; 10(6): 2024-2034, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-36942615

RESUMO

Tunable structural color has many potential applications in artificial camouflage, mechanical sensors, etc. Despite the extensive efforts to develop efficient tunable structural color, there is still a wide gap between the existing "passive" tuning methods and the "active" strategy found on organisms such as chameleons that can change color according to the environment. Inspired by the active tunable color system of chameleons, we propose a smart skin comprising a nanoscale hole array of photonic crystals, carbon nanotube coatings, and liquid crystal elastomers, to integrate multiple functions, i.e., structural color tunability, sensing, and actuation, in one structure. The smart skin was further coupled with an image acquisition unit (which mimics eyes to obtain colors from the environment) and a controller (which mimics the brain to process the signals transmitted from the image acquisition unit to the smart skin), to construct an active tunable structural color system. The proposed system autonomously modulates the color according to the environmental color. To validate the color tuning, color scanning from red to green to blue or vice versa is demonstrated in this work, which could certainly open up new paths to create active tunable structural color systems, and thus, push the development of structural color-based devices and systems.

11.
Small ; 19(17): e2206342, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36653937

RESUMO

Artificial muscles are of significant value in robotic applications. Rigid artificial muscles possess a strong load-bearing capacity, while their deformation is small; soft artificial muscles can be shifted to a large degree; however, their load-bearing capacity is weak. Furthermore, artificial muscles are generally controlled in an open loop due to a lack of deformation-related feedback. Human arms include muscles, bones, and nerves, which ingeniously coordinate the actuation, load-bearing, and sensory systems. Inspired by this, a soft-rigid hybrid smart artificial muscle (SRH-SAM) based on liquid crystal elastomer (LCE) and helical metal wire is proposed. The thermotropic responsiveness of the LCE is adopted for large reversible deformation, and the helical metal wire is used to fulfill high bearing capacity and electric heating function requirements. During actuation, the helical metal wire's resistance changes with the LCE's electrothermal deformation, thereby achieving deformation-sensing characteristics. Based on the proposed SRH-SAM, a reconfigurable blazed grating plane and the effective switch between attachment and detachment in bionic dry adhesion are accomplished. The SRH-SAM opens a new avenue for designing smart artificial muscles and can promote the development of artificial muscle-based devices.

12.
Adv Mater ; 35(2): e2207141, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36281804

RESUMO

Developing highly sensitive strain sensors requires conduction pathways capable of rapidly switching between disconnection and reconnection in response to strain. Ion channels in living organisms exactly control the channel switch through protein-composed gates, achieving changeable ion currents. Herein, inspired by the gating characteristics of the ion channels, a programmable fluidic strain sensor enhanced by gating ion pathways through heterogeneous strain distribution of discrete micropillars is proposed. During stretching, the contraction and closure of the widthwise gaps between discrete micropillars greatly weaken or even nearly cut off the conduction pathway, resulting in orders of magnitude increase in resistance and thus ultrahigh sensitivity. By adjusting the combination form and structural parameters of the discrete micropillars in the fluidic channel, the sensitivity and strain range can be customized. Thus, a gauge factor of up to 45 300 and a stretch range of 590% are obtained. Benefiting from the fluidic gating mechanism, no mechanical mismatch can be observed at the interface, breaking through the sensing stability issue of flexible sensors. The proposed sensor can be used to detect the full range of human motion, and integrated into a data glove to achieve human-machine interaction.


Assuntos
Técnicas Biossensoriais , Canais Iônicos , Movimento (Física) , Humanos
13.
Sci Adv ; 8(48): eade0720, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36459548

RESUMO

Human-like tactile perception is critical for promoting robotic intelligence. However, reproducing tangential "sliding" perception of human skin is still struggling. Inspired by the lateral gating mechanosensing mechanism of mechanosensory cells, which perceives mechanical stimuli by lateral tension-induced opening-closing of ion channels, we report a robot skin (R-skin) with mechanically gated electron channels, achieving ultrasensitive and fast-response sliding tactile perception via pyramidal artificial fingerprint-triggered opening-closing of electron gates (E-gates, namely, customized V-shaped cracks within embedded mesh electron channels). By imitating cytomembrane to modulate membrane mechanics, local strain is enhanced at E-gates to effectively regulate electron pathways for high sensitivity while weakened at other positions to suppress random cracks for robust stability. The R-skin can directly recognize ultrafine surface microstructure (5 µm) at a response frequency (485 Hz) outshining humans and achieve human-like sliding perception functions, including dexterously distinguishing texture of complex-shaped objects and providing real-time feedback for grasping.

14.
Nat Commun ; 13(1): 7659, 2022 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-36496484

RESUMO

Bioinspired dry adhesives have an extraordinary impact in the field of robotic manipulation and locomotion. However, there is a considerable difference between artificial structures and biological ones regarding surface adaptability, especially for rough surfaces. This can be attributed to their distinct structural configuration and forming mechanism. Here, we propose a core-shell adhesive structure that is obtained through a growth strategy, i.e., an electrically responsive self-growing core-shell structure. This growth strategy results in a specific mushroom-shaped structure with a rigid core and a soft shell, which exhibits excellent adhesion on typical target surfaces with roughness ranging from the nanoscale to the microscale up to dozens of micrometers. The proposed adhesion strategy extends dry adhesives from smooth surfaces to rough ones, especially for rough surfaces with roughness up to dozens or hundreds of micrometers, opening an avenue for the development of dry adhesive-based devices and systems.


Assuntos
Adesivos , Locomoção , Adesivos/química , Eletricidade
15.
Phys Rev E ; 106(1-2): 015111, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35974516

RESUMO

It is well known that surface tension is dependent on temperature, and thus a nonuniform temperature may cause thermocapillary flow which is referred to as the Marangoni effect. For a thin liquid-air film confined between a flat hot plate and a topographical cold template, it undergoes deformation due to thermocapillary flow. This phenomenon is termed as thermocapillary patterning, and has been used to fabricate micro- and nanostructure in polymer films. In most cases, the obtained structure conforms to the template; i.e., it can be considered as a replication technique. In this paper, we developed a two-phase flow numerical model based on the phase field to study the dynamic process of thermocapillary patterning. As a remeshing-free method, the phase field enables the incorporation of thermal field and multiphase flow with free surface deformation. The numerical model was employed to study the dynamic process of thermocapillary patterning. Meanwhile, the effects of some parameters, e.g., temperature, geometry parameters, and contact angle, were also investigated.

16.
Research (Wash D C) ; 2022: 9852138, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935142

RESUMO

Highly sensitive flexible pressure sensors play an important role to ensure the safety and friendliness during the human-robot interaction process. Microengineering the active layer has been shown to improve performance of pressure sensors. However, the current structural strategy almost relying on axial compression deformation suffers structural stiffening, and together with the limited area growth efficiency of conformal interface, essentially limiting the maximum sensitivity. Here, inspired by the interface contact behavior of gecko's feet, we design a slant hierarchical microstructure to act as an electrode contacting with an ionic gel layer, fundamentally eliminating the pressure resistance and maximizing functional interface expansion to achieving ultrasensitive sensitivity. Such a structuring strategy dramatically improves the relative capacitance change both in the low- and high-pressure region, thereby boosting the sensitivity up to 36000 kPa-1 and effective measurement range up to 300 kPa. To verify the advantages of high sensitivity, the sensor is integrated with a soft magnetic robot to demonstrate a biomimetic Venus flytrap. The ability to perceive weak stimuli allows the sensor to be used as a sensory and feedback window, realizing the capture of small live insects and the transportation of fragile objects.

17.
Front Robot AI ; 9: 889848, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035870

RESUMO

Liquid crystal elastomers (LCEs) have shown great potential as soft actuating materials in soft robots, with large actuation strain and fast response speed. However, to achieve the unique features of actuation, the liquid crystal mesogens should be well aligned and permanently fixed by polymer networks, limiting their practical applications. The recent progress in the 3D printing technologies of LCEs overcame the shortcomings in conventional processing techniques. In this study, the relationship between the 3D printing parameters and the actuation performance of LCEs is studied in detail. Furthermore, a type of inchworm-inspired crawling soft robot based on a liquid crystal elastomeric actuator is demonstrated, coupled with tilted fish-scale-like microstructures with anisotropic friction as the foot for moving forwards. In addition, the anisotropic friction of inclined scales with different angles is measured to demonstrate the performance of anisotropic friction. Lastly, the kinematic performance of the inchworm-inspired robot is tested on different surfaces.

18.
Sci Adv ; 8(20): eabn5722, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35584225

RESUMO

An artificial muscle capable of shape programmability, deformation-locking capacity without needing continuous external energy, and self-sensing capability is highly desirable yet challenging in applications of reconfigurable antenna, deployable space structures, etc. Inspired by coupled behavior of the muscles, bones, and nerve system of mammals, a multifunctional artificial muscle based on polydopamine-coated liquid crystal elastomer (LCE) and low-melting point alloy (LMPA) in the form of a concentric tube/rod is proposed. Thereinto, the outer LCE is used for reversible contraction and recovery (i.e., muscle function); the inner LMPA in the resolidification state is adopted for deformation locking, and that in the melt state is adopted for angle variation monitoring by detecting resistance change (i.e., bones and nerve functions, respectively). The proposed artificial muscle demonstrates multiple performances, including controllable bending angle, position, and direction; deformation locking for supporting heavy objects; and real-time monitoring of angle variation, which also provides a straightforward and effective approach for designing soft devices.

19.
RSC Adv ; 12(16): 9681-9697, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35424937

RESUMO

The free surface of a thin polymeric film is often unstable and deforms into various micro-/nano-patterns under an externally applied electric field. This paper reviews a recent patterning technique, electrohydrodynamic patterning (EHDP), a straightforward, cost-effective and contactless bottom-up method. The theoretical and numerical studies of EHDP are shown. How the characteristic wavelength and the characteristic time depend on both the external conditions (such as voltage, film thickness, template-substrate spacing) and the initial polymer properties (such as rheological property, electrical property and surface tension) is theoretically and experimentally discussed. Various possible strategies for fabricating high-aspect-ratio or hierarchical patterns are theoretically and experimentally reviewed. Aligning and ordering of the anisotropic polymers by EHDP is emphasized. A perspective, including novelty and limitations of the methods, particularly in comparison to some conventional patterning techniques, and a possible future direction of research, is presented.

20.
Small Methods ; 6(4): e2101539, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35107222

RESUMO

Reducing the contact resistance between active materials and current collectors is of engineering importance for improving capacitive energy storage. 3D current collectors have shown extraordinary promise for reducing the contact resistance, however, there is a major obstacle of being bulky or inefficient fabrication before they become viable in practice. Here a roll-to-roll nanoimprinting method is demonstrated to deform flat aluminum foils into 3D current collectors with hierarchical microstructures by combining soft matter-enhanced plastic deformation and template-confined local surface nanocracks. The generated 3D current collectors are inserted by and interlocked with active electrode materials such as activated carbon, decreasing the contact resistance by at least one order of magnitude and quadrupling the specific capacitance at high current density of 30 A g-1 for commercial-level mass loading of 5 mg cm-2 . The 3D current collectors are so compact that they have a low volume percentage of 7.8% in the entire electrode film, resulting in energy and power density of 29.1 Wh L-1 and 12.8 kW L-1 , respectively, for stack cells in organic electrolyte. Furthermore, roll-to-roll nanoimprinting of metal microstructures is low-cost, high-throughput, and can be extended to other systems that involve the microstructured metal interface, such as batteries and thermal management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...