Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 11(6)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199490

RESUMO

Nanocomposites of the binary transition metal sulfide Zn-Co-S/graphene (Zn-Co-S@G) were synthesized through a one-step hydrothermal method. They may be useful in the construction of an electrochemical immunosensor for carbohydrate antigen 19-9 (CA19-9) detection. Zn-Co-S dot-like nanoparticles uniformly covered the surface of graphene to form an interconnected conductive network, ensuring strong interaction between transition metal sulfide and graphene, which can expose numerous electroactive sites leading to the improvement of the amplified electrochemical signal toward a direct reduction of H2O2. Thus, the construction of an electrochemical immunosensor using Zn-Co-S@G nanocomposites showed outstanding sensing properties for detecting CA19-9. The constructed electrochemical immunosensor exhibited a good linear relationship in the range of 6.3 U·mL-1-300 U·mL-1, with the limit of detection at 0.82 U·mL-1, which makes it a promising candidate for an electrochemical immunosensor.

2.
J Hazard Mater ; 401: 123724, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33113726

RESUMO

Organophosphates (OPs) are highly toxic compounds, with widespread application in agricultural and chemical industries, whose introduction into the environment poses serious hazards to humans and ecological systems. To assess and ultimately mitigate these hazards, this study predicted the acute toxicity of OPs according to their chemical structure and administration route. The acute toxicity data of 161 OPs in two species via six different administration routes were manually collected and used to develop a series of quantitative structure-toxicity relationship (QSTR) models with robust and practical predictive abilities. The random forest algorithm was used to develop the models, employing both quantum chemical and two-dimensional descriptors according to OECD guidelines. Correlation results and feature similarities indicated that whereas acute toxicity data from rats and mice via the same administration route were combinable for modeling, data from different routes were not. Six QSTR models for each route in a single species and two QSTR models for a single route in the two species were constructed, achieving practical predictive performance. Despite significant variances in their datasets, the prediction models could predict the acute toxicity of novel or unknown OPs, realize rapid assessment, and provide guidance for regulatory decisions to reduce the hazards of OPs.


Assuntos
Organofosfatos , Preparações Farmacêuticas , Algoritmos , Animais , Ecossistema , Camundongos , Organofosfatos/toxicidade , Relação Quantitativa Estrutura-Atividade , Ratos
3.
Sensors (Basel) ; 20(15)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759678

RESUMO

Zn-Co-S ball-in-ball hollow sphere (BHS) was successfully prepared by solvothermal sulfurization method. An efficient strategy to synthesize Zn-Co-S BHS consisted of multilevel structures by controlling the ionic exchange reaction was applied to obtain great performance electrode material. Carbon nanotubes (CNTs) as a conductive agent were uniformly introduced with Zn-Co-S BHS to form Zn-Co-S BHS/CNTs and expedited the considerable electrocatalytic behavior toward glucose electro-oxidation in alkaline medium. In this study, characterization with scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) was used for investigating the morphological and physical/chemical properties and further evaluating the feasibility of Zn-Co-S BHS/CNTs in non-enzymatic glucose sensing. Electrochemical methods (cyclic voltammetry (CV) and chronoamperometry (CA)) were performed to investigate the glucose sensing performance of Zn-Co-S BHS/CNTs. The synergistic effect of Faradaic redox couple species of Zn-Co-S BHS and unique conductive network of CNTs exhibited excellent electrochemical catalytic ability towards the glucose electro-oxidation, which revealed linear range from 5 to 100 µM with high sensitivity of 2734.4 µA mM-1 cm-2, excellent detection limit of 2.98 µM, and great selectivity in the presence of dopamine, uric acid, ascorbic acid, and fructose. Thus, Zn-Co-S BHS/CNTs would be expected to be a promising material for non-enzymatic glucose sensing.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Glucose/análise , Nanotubos de Carbono , Eletrodos , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA