Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
1.
Inj Prev ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38768979

RESUMO

BACKGROUND: Practical interventions of fall prevention are challenging for infants and toddlers. This study aimed to explore specific details of falls that occurred at home for kids 0-3 years old using key information from social media platforms, which provided abundant data sources for fall events. METHODS: We used internet-based search techniques to collect fall events information from 2013 to 2023. The search was restricted and implemented between 1 and 12 April 2023. Online platforms included Baidu, Weibo, WeChat, TikTok, Toutiao and Little Red Book. A qualitative descriptive approach was used to analyse the fall events and major factors, including the fall event time, child age, environmental factors and behavioural characteristics of children and caregivers. RESULTS: We identified 1005 fall injury cases among infants and toddlers. Fall mechanisms included falls from household furniture (71.2%), falls from height (21.4%) and falls on the same level (7.4%). Environmental risk factors mainly consisted of not using or installing bed rails incorrectly, a gap between beds, unstable furniture, slippery ground and windows without guardrails. Behavioural factors included caregivers leaving a child alone, lapsed attention, turning around to retrieve something, misusing baby products, inadequately holding the child and falling asleep with children. Child behavioural factors included walking or running while holding an object in hand or mouth and underdeveloped walking skills. CONCLUSION: Interventions for preventing falls should be designed specifically for Chinese families, especially considering family function in the context of Chinese culture. Social media reports could provide rich information for researchers.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38708522

RESUMO

Deficiencies in mice and in humans have brought to the fore the importance of the caveolar network in key aspects of adipocyte biology. The conserved N-terminal caveolin-binding motif (CBM) of the ubiquitous Na/K-ATPase (NKA) α1 isoform, which allows NKA/caveolin-1 (Cav1) interaction, influences NKA signaling and caveolar distribution. It has been shown to be critical for animal development and ontogenesis, as well as lineage-specific differentiation of human induced pluripotent stem cells (hiPSC). However, its role in postnatal adipogenesis has not been fully examined. Using a genetic approach to alter CBM in hiPSC-derived adipocytes (iAdi-mCBM) and in mice (mCBM), we investigated the regulatory function of NKA CBM signaling in adipogenesis. Seahorse XF cell metabolism analyses revealed impaired glycolysis and decreased ATP synthesis-coupled respiration in iAdi-mCBM. These metabolic dysfunctions were accompanied by evidence of extensive remodeling of the extracellular matrix (ECM), including increased collagen staining, overexpression of ECM marker genes, and heightened TGF-ß signaling uncovered by RNAseq analysis. Rescue of mCBM by lentiviral delivery of WT NKA α1 or treatment of mCBM hiPSC with the TGF-ß inhibitor SB431542 normalized ECM, suggesting that NKA CBM signaling integrity is required for adequate control of TGF-ß signaling and ECM stiffness during adipogenesis. The physiological impact was revealed in mCBM male mice with reduced fat mass accompanied by histological and transcriptional evidence of elevated adipose fibrosis and decreased adipocyte size. Based on these findings, we propose that the genetic alteration of the NKA/Cav1 regulatory path uncovered in human iAdi leads to lipodystrophy in mice.

3.
J Hazard Mater ; 470: 134306, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626684

RESUMO

Soil cadmium (Cd) is immobilized by the progressing biomineralization process as microbial induced phosphate precipitation (MIPP), which is regulated by phosphate (P) solubilizing microorganisms and P sources. However, little attention has been paid to the implications of Cd biosorption during MIPP. In this study, the newly isolated Penicillium oxalicum could immobilize 5.4-12.6 % of Cd2+, while the presence of hydroxyapatite (HAP) considerably enhanced Cd2+ immobilization in P. oxalicum and reached over 99 % Cd2+ immobilization efficiency within 7 days. Compared to P. oxalicum mono inoculation, MIPP dramatically boosted Cd biosorption and biomineralization efficiency by 71 % and 16 % after 96 h cultivation, respectively. P. oxalicum preferred to absorbing Cd2+ and reaching maximum Cd2+ biosorption efficiency of 87.8 % in the presence of HAP. More surface groups in P. oxalicum and HAP mineral involved adsorption which resulted in the formation of Cd-apatite [Ca8Cd2(PO4)6(OH)2] via ion exchange. Intracellular S2-, secreted organic acids and soluble P via HAP solubilization complexed with Cd2+, progressively mineralized into Cd5(PO4)3OH, Cd(H2PO4)2, C4H6CdO4 and CdS. These results suggested that Cd2+ immobilization was enhanced simultaneously by the accelerated biosorption and biomineralization during P. oxalicum induced P precipitation. Our findings revealed new mechanisms of Cd immobilization in MIPP process and offered clues for remediation practices at metal contaminated sites.


Assuntos
Biomineralização , Cádmio , Penicillium , Fosfatos , Penicillium/metabolismo , Cádmio/química , Cádmio/metabolismo , Fosfatos/química , Fosfatos/metabolismo , Adsorção , Durapatita/química , Poluentes do Solo/metabolismo , Poluentes do Solo/química , Biodegradação Ambiental , Precipitação Química
4.
Sci Total Environ ; 926: 171778, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38513872

RESUMO

Cr(III)-substituted ferrihydrite (Fh-Cr(III)) is widespread in the surrounding environment of mining areas. Fh-Cr(III) is unstable and susceptible to the influence of environmental factors, such as dissolved organic matter (DOM) and light, so Cr species embedded in mineral crystal layers are likely to have more profound negative effects on the environment with the photochemical behaviors of minerals. However, the photochemical behaviors of Fh-Cr(III) in the presence of DOM remains poorly understood. For this reason, citric acid (CA) was chosen as the representative DOM to study its combined effects with visible light irradiation on Fh-Cr(III) dissolution and phase transition. The results showed that CA hindered the agglomeration of Fh-Cr(III) particles, thereby slowing the phase transition of Fh-Cr(III). However, CA exacerbated the release of Fe and Cr by maintaining Fh-Cr(III) under unstable crystal structure. Moreover, due to the occurrence of ligand-metal charge transfer (LMCT) in (CA)n-Fh-Cr(III) formed on the Fh-Cr(III) surface, the synergistic effect between CA and light irradiation greatly promoted the dissolution of Fh-Cr(III). In the mixed system of Fh-Cr(III) (3 g/L) and CA (5 mM) at initial pH 3.0, the maximum concentrations of TFe and TCr were 18.17 and 5.68 mg/L after 6 h of light reaction, which were 1.82 and 3.62 times of those in the corresponding system in the darkness. Meanwhile, the Fe(III)/Fe(II) cycling in solution and solid surfaces was affected by various reactive oxygen species (ROS) generated from the LMCT process, in which the photoproduced Fe(II) further accelerated Cr(III) dissolution under acidic solution. The fast release of Cr(III) may pose greater danger to the environment as the more toxic Cr(VI) can be easily formed through the oxidation of dissolved Cr(III). This work offers fresh insights into the migration and transformation of Cr elements in the natural environment.

5.
Environ Microbiol ; 26(1): e16577, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38183371

RESUMO

Cell surface hydrophobicity (CSH) dominates the interactions between rhizobacteria and pollutants at the soil-water interface, which is critical for understanding the dissipation of pollutants in the rhizosphere microzone of rice. Herein, we explored the effects of self-adaptive CSH of Sphingomonas sp. strain PAH02 on the translocation and biotransformation behaviour of cadmium-phenanthrene (Cd-Phe) co-pollutant in rice and rhizosphere microbiome. We evidenced that strain PAH02 reduced the adsorption of Cd-Phe co-pollutant on the rice root surface while enhancing the degradation of Phe and adsorption of Cd via its self-adaptive CSH in the hydroponic experiment. The significant upregulation of key protein expression levels such as MerR, ARHDs and enoyl-CoA hydratase/isomerase, ensures self-adaptive CSH to cope with the stress of Cd-Phe co-pollutant. Consistently, the bioaugmentation of strain PAH02 promoted the formation of core microbiota in the rhizosphere soil of rice (Oryza sativa L.), such as Bradyrhizobium and Streptomyces and induced gene enrichment of CusA and PobA that are strongly associated with pollutant transformation. Consequently, the contents of Cd and Phe in rice grains at maturity decreased by 17.2% ± 0.2% and 65.7% ± 0.3%, respectively, after the bioaugmentation of strain PAH02. These findings present new opportunities for the implementation of rhizosphere bioremediation strategies of co-contaminants in paddy fields.


Assuntos
Poluentes Ambientais , Oryza , Fenantrenos , Poluentes do Solo , Sphingomonas , Cádmio/metabolismo , Oryza/metabolismo , Poluentes Ambientais/metabolismo , Sphingomonas/genética , Sphingomonas/metabolismo , Proteômica , Poluentes do Solo/metabolismo , Fenantrenos/metabolismo , Solo , Rizosfera
6.
Plant Cell Environ ; 47(4): 1041-1052, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37997205

RESUMO

In arbuscular mycorrhizal (AM) symbiosis, sugars in root cortical cells could be exported as glucose or sucrose into peri-arbuscular space for use by AM fungi. However, no sugar transporter has been identified to be involved in sucrose export. An AM-inducible SWEET transporter, GmSWEET6, was functionally characterised in soybean, and its role in AM symbiosis was investigated via transgenic plants. The expression of GmSWEET6 was enhanced by inoculation with the cooperative fungal strain in both leaves and roots. Heterologous expression in a yeast mutant showed that GmSWEET6 mainly transported sucrose. Transgenic plants overexpressing GmSWEET6 increased sucrose concentration in root exudates. Overexpression or knockdown of GmSWEET6 decreased plant dry weight, P content, and sugar concentrations in non-mycorrhizal plants, which were partly recovered in mycorrhizal plants. Intriguingly, overexpression of GmSWEET6 increased root P content and decreased the percentage of degraded arbuscules, while knockdown of GmSWEET6 increased root sugar concentrations in RNAi2 plants and the percentage of degraded arbuscules in RNAi1 plants compared with wild-type plants when inoculated with AM fungi. These results in combination with subcellular localisation of GmSWEET6 to peri-arbuscular membranes strongly suggest that GmSWEET6 is required for AM symbiosis by mediating sucrose efflux towards fungi.


Assuntos
Micorrizas , Simbiose , Glycine max , Micorrizas/metabolismo , Fungos , Plantas Geneticamente Modificadas/metabolismo , Glucose/metabolismo , Sacarose/metabolismo , Raízes de Plantas/metabolismo
7.
Plant Cell Environ ; 47(1): 259-277, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37691629

RESUMO

Phosphorus (P) is an essential nutrient, but easily fixed in soils. Therefore, most of soil P exists in the form of inaccessible organic phosphorus (Po), particularly phytate-P. Root-associated purple acid phosphatases (PAPs) are considered to play a crucial role in phosphate (Pi) scavenging in soils. However, evidence for regulating root-associated PAPs in utilization of extracellular phytate-P remain largely unknown in plants at both transcriptional and posttranslational levels. In this study, a Pi-starvation responsive GmPAP15a was identified in soybean (Glycine max). Overexpressing GmPAP15a led to significant increases in root-associated phytase activities, as well as total P content when phytate-P was supplied as the sole P resource in soybean hairy roots. Meanwhile, mass spectrometry (MS) analysis showed GmPAP15a was glycosylated at Asn144 and Asn502 , and its glycan structures of N-linked oligosaccharide chains exhibited microheterogeneity. Moreover, two homologues of AtPHR1, GmPHR9 and GmPHR32 were found to activate GmPAP15a transcription through luciferase activity analysis. Taken together, it is strongly suggested that GmPAP15a plays a vital role in phytate-P utilization in soybean, which might be regulated at both transcriptional and glycosylation modification levels. Our results highlight the GmPHR9/GmPHR32-GmPAP15a signalling pathway might present, and control phytate-P utilization in soybean.


Assuntos
Glycine max , Ácido Fítico , Glycine max/metabolismo , Glicosilação , Ácido Fítico/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Fósforo/metabolismo , Solo
8.
Biomedicines ; 11(12)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38137428

RESUMO

Na/K-ATPase (NKA)-mediated regulation of Src kinase, which involves defined amino acid sequences of the NKA α1 polypeptide, has emerged as a novel regulatory mechanism of mitochondrial function in metazoans. Mitochondrial metabolism ensures adequate myocardial performance and adaptation to physiological demand. It is also a critical cellular determinant of cardiac repair and remodeling. To assess the impact of the proposed NKA/Src regulatory axis on cardiac mitochondrial metabolic function, we used a gene targeting approach in human cardiac myocytes. Human induced pluripotent stem cells (hiPSC) expressing an Src-signaling null mutant (A420P) form of the NKA α1 polypeptide were generated using CRISPR/Cas9-mediated genome editing. Total cellular Na/K-ATPase activity remained unchanged in A420P compared to the wild type (WT) hiPSC, but baseline phosphorylation levels of Src and ERK1/2 were drastically reduced. Both WT and A420P mutant hiPSC readily differentiated into cardiac myocytes (iCM), as evidenced by marker gene expression, spontaneous cell contraction, and subcellular striations. Total NKA α1-3 protein expression was comparable in WT and A420P iCM. However, live cell metabolism assessed functionally by Seahorse extracellular flux analysis revealed significant reductions in both basal and maximal rates of mitochondrial respiration, spare respiratory capacity, ATP production, and coupling efficiency. A significant reduction in ROS production was detected by fluorescence imaging in live cells, and confirmed by decreased cellular protein carbonylation levels in A420P iCM. Taken together, these data provide genetic evidence for a role of NKA α1/Src in the tonic stimulation of basal mitochondrial metabolism and ROS production in human cardiac myocytes. This signaling axis in cardiac myocytes may provide a new approach to counteract mitochondrial dysfunction in cardiometabolic diseases.

9.
Eur J Med Res ; 28(1): 427, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37821912

RESUMO

BACKGROUND: The neuropathological confirmation serves as the gold standard for diagnosing Alzheimer's disease (AD), but it is usually not available to the living individuals. In addition, the gold standard for diagnosing Mild Cognitive Impairment (MCI) remains unclear yet. Neuropsychological testing, such as the Montreal Cognitive Assessment (MoCA), Mini-Mental State Examination (MMSE) and Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-cog), is commonly used tests in identifying AD and MCI, offering convenience, affordability, non-invasiveness, and accessibility in clinical settings. We aimed to accurately evaluate the discriminative ability of the three tests administrated at the same visit simultaneously in detecting AD and MCI due to AD in the absence of a gold standard. METHODS: A total of 1289 participants aged over 65 were included from the baseline visits of Alzheimer's disease Neuroimaging Initiative. Bayesian latent class models, accounting for conditional dependence between MoCA and MMSE, were conducted to assess the diagnostic accuracy of the three tests for detecting AD and MCI. RESULTS: In detecting AD, the ADAS-cog had the highest Youden's Index (0.829), followed by the MoCA(0.813) and MMSE(0.796). The ADAS-cog and MoCA showed similar sensitivity (0.922 vs 0.912) and specificity (0.907 vs 0.901), while the MMSE had lower sensitivity (0.874) and higher specificity (0.922). For MCI detection, the ADAS-cog had the highest Youden's Index (0.704) compared to the MoCA (0.614) and MMSE (0.478). The ADAS-cog exhibited the highest sensitivity, closely followed by the MoCA and MMSE (0.869 vs 0.845 vs 0.757), and the ADAS-cog also had good specificity (0.835 vs 0.769 vs 0.721). The estimated true prevalence of AD among individuals aged over 65 was 20.0%, and the estimated true prevalence of MCI due to AD was 24.8%. CONCLUSIONS: The findings suggest that the ADAS-cog and MoCA are reliable tools for detecting AD and MCI, while the MMSE may be less sensitive in detecting these conditions. A large underdiagnosis of the MCI and Alzheimer's population still remains in clinical screening.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Idoso , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/psicologia , Teorema de Bayes , Estudos Retrospectivos , Testes Neuropsicológicos , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/epidemiologia , Disfunção Cognitiva/psicologia
10.
ACS Omega ; 8(31): 28821-28833, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37576696

RESUMO

The high adsorption capacity of coal reservoirs poses a challenge to the evaluation of productivity and output profiles for each segment of fractured horizontal wells using tracers. In this study, the microstructure of a coal sample from block B and its absorption character to a micromaterial tracer are analyzed first. Then, an anti-adsorption micromaterial tracer system which is suitable for block B is proposed by evaluating different types of complexing agents and extractant agents. The system comprises micromaterial tracers (200 ppb) + ethylenediaminetetraacetic acid tetrasodium (EDTA-4Na in short) (0.01%) + di(2-ethylhexyl) phosphate (HDEHP in short) (0.001%), and its anti-adsorption character of the system is analyzed. The concentration dynamics of micromaterial tracers are analyzed by the flowback fluid testing of one fracturing well and two adjacent wells. Then, a judging method for productivity and connectivity of each segment of horizontal wells is established. Moreover, the anti-adsorption micromaterial tracer system judgment method is employed to analyze the staged fracturing performance of horizontal well B1 in the coal reservoir of block B. Eight types of micromaterial tracers are utilized to label the fluid in each fracturing segment for assessing the connectivity between well B1 and adjacent wells B1-1 and B1-2. The results show that the anti-adsorption micromaterial tracer system exhibits minimal adsorption loss and can be well applied in segment monitoring in the horizontal fracturing well of coal reservoirs. The main productive segments of well B1 are #1, #4, and #8. Well B1 exhibits good connectivity with adjacent well B1-1 in segments #1, #4, #6, and #8. Conversely, all segments of well B1 exhibit poor connectivity with adjacent well B1-2. The results can provide a dependable reference for optimizing fracturing parameters, well spacing, and productivity evaluation in coal reservoirs. The results obtained in this study are consistent with the results obtained by using the four-dimensional (4D in short) image monitoring technology, which proves the good accuracy and reliability of the micromaterial tracer monitoring method.

11.
Pak J Pharm Sci ; 36(3): 819-827, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37580931

RESUMO

Gastric ulcer is a common gastrointestinal disease caused by excessive gastric acid secretion, which has been recognized as one of the most common causes of morbidity and mortality in the world. The skin of Rana chensinensis is rich in collagen and many previous studies have shown that it has certain bioactivity. Therefore, we extracted and purified collagen with a molecular weight less than 10000 Da from the skin of Rana chensinensis, and studied its gastric protective mechanism through the model of ethanol-induced gastric ulcer in Balb/c mice. The results showed that through macroscopic observation and significantly reduced ulcer index, it was proved that PCRCS could protect gastric mucosa and alleviate the damage of ethanol to gastric mucosa. PCRCS reduced ethanol-induced oxidative stress by boosting depleted SOD levels and dramatically lowering MDA levels, as well as significantly reducing lipid peroxidation. Additionally PCRCS (Protein Chinese Rana chesinensis Skin) additionally decreased the launch of inflammatory mediators TNF-α and IL-6 and more desirable the content material of protective elements NO and PGE2 in gastric mucosa. Based on these findings, we believe that PCRCS has potential stomach protective effects on ethanol-induced gastric ulcer, which may be achieved by inhibiting oxidative stress and stomach inflammation.


Assuntos
Antiulcerosos , Mucosa Gástrica , Ranidae , Úlcera Gástrica , Animais , Camundongos , Antiulcerosos/efeitos adversos , Antiulcerosos/farmacologia , Antiulcerosos/uso terapêutico , Colágeno/farmacologia , Etanol/toxicidade , Mucosa Gástrica/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/prevenção & controle , Substâncias Protetoras/efeitos adversos , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , China , Modelos Animais de Doenças , Pele
12.
Environ Pollut ; 336: 122408, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37597734

RESUMO

Glyphosate (Glp) was encapsulated onto the dopamine-modified attapulgite to develop an attapulgite-based nano-enabled Glp (DGlp) in this study with comparable weed control effects to pure Glp and commercial Glp solutions. Within 24 hours, the active Glp molecule was slowly released from DGlp at a maximum remaining rate of over 90%, and then degraded similarly to Glp solution in soil. The addition of DGlp improved soil available phosphorus (P) contents, phosphatase activity, and enzyme extractable P fraction. However, compared to Glp solution, DGlp addition had no effect on the transformation of soil inorganic P fractions. The 16S rRNA sequencing and co-occurrence network results revealed that DGlp had no significant effect on the soil bacterial diversity but diminished the complexity of soil bacterial network. According to the Mantel test, DGlp addition stimulated soil phosphatase activity and proliferation of dominant bacterial taxa (Proteobacteria and Firmicutes) capable of degrading Glp. Proteobacteria and Firmicutes that had been extensively recruited and enriched for their phosphatase activities may have mobilized reactive enzyme-P, significantly enhancing the transformation of reactive organic P and P-pool in soil. These results contributed to our understanding of the ecotoxicity and environmental impacts of nano-enabled Glp prior to its successful and sustainable application in agriculture.

13.
Artigo em Inglês | MEDLINE | ID: mdl-37015131

RESUMO

Transformer, an attention-based encoder-decoder model, has already revolutionized the field of natural language processing (NLP). Inspired by such significant achievements, some pioneering works have recently been done on employing Transformer-liked architectures in the computer vision (CV) field, which have demonstrated their effectiveness on three fundamental CV tasks (classification, detection, and segmentation) as well as multiple sensory data stream (images, point clouds, and vision-language data). Because of their competitive modeling capabilities, the visual Transformers have achieved impressive performance improvements over multiple benchmarks as compared with modern convolution neural networks (CNNs). In this survey, we have reviewed over 100 of different visual Transformers comprehensively according to three fundamental CV tasks and different data stream types, where taxonomy is proposed to organize the representative methods according to their motivations, structures, and application scenarios. Because of their differences on training settings and dedicated vision tasks, we have also evaluated and compared all these existing visual Transformers under different configurations. Furthermore, we have revealed a series of essential but unexploited aspects that may empower such visual Transformers to stand out from numerous architectures, e.g., slack high-level semantic embeddings to bridge the gap between the visual Transformers and the sequential ones. Finally, two promising research directions are suggested for future investment. We will continue to update the latest articles and their released source codes at.

14.
Environ Res ; 225: 115616, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36871940

RESUMO

This study investigated the diffusion and enrichment of antibiotic resistance genes (ARGs) and pathogens via the transmission chain (mulberry leaves - silkworm guts - silkworm feces - soil) near a manganese mine restoration area (RA) and control area (CA, away from RA). Horizontal gene transfer (HGT) of ARGs was testified by an IncP a-type broad host range plasmid RP4 harboring ARGs (tetA) and conjugative genes (e.g., korB, trbA, and trbB) as an indicator. Compared to leaves, the abundances of ARGs and pathogens in feces after silkworms ingested leaves from RA increased by 10.8% and 52.3%, respectively, whereas their abundance in feces from CA dropped by 17.1% and 97.7%, respectively. The predominant ARG types in feces involved the resistances to ß-lactam, quinolone, multidrug, peptide, and rifamycin. Therein, several high-risk ARGs (e.g., qnrB, oqxA, and rpoB) carried by pathogens were more enriched in feces. However, HGT mediated by plasmid RP4 in this transmission chain was not a main factor to promote the enrichment of ARGs due to the harsh survival environment of silkworm guts for the plasmid RP4 host E. coli. Notably, Zn, Mn, and As in feces and guts promoted the enrichment of qnrB and oqxA. Worriedly, the abundance of qnrB and oqxA in soil increased by over 4-fold after feces from RA were added into soil for 30 days regardless of feces with or without E. coli RP4. Overall, ARGs and pathogens could diffuse and enrich in environment via the sericulture transmission chain developed at RA, especially some high-risk ARGs carried by pathogens. Thus, greater attentions should be paid to dispel such high-risk ARGs to support benign development of sericulture industry in the safe utilization of some RAs.


Assuntos
Bombyx , Metais Pesados , Morus , Animais , Antibacterianos/farmacologia , Bombyx/genética , Manganês , Genes Bacterianos , Morus/genética , Solo , Escherichia coli , Resistência Microbiana a Medicamentos/genética , Metais Pesados/toxicidade , Fezes , Mineração
15.
J Hazard Mater ; 451: 131096, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36893602

RESUMO

In this study, the available phosphorus (AP) and TCF concentrations in soils and maize (Zea mays) seedling tissues were measured in response to escalating TCF concentrations during 216 hr of culture. Maize seedlings growth considerably enhanced soil TCF degradation, reaching the highest of 73.2% and 87.4% at 216 hr in 50 and 200 mg/kg TCF treatments, respectively, and increased AP contents in all the seedling tissues. Soil TCF was majorly accumulated in seedling roots, reaching maximum concentration of 0.017 and 0.076 mg/kg in TCF-50 and TCF-200, respectively. The hydrophilicity of TCF might hinder its translocation to the aboveground shoot and leaf. Using bacterial 16 S rRNA gene sequencing, we found that TCF addition drastically lessened bacterial community interactions and hindered the complexity of their biotic networks in rhizosphere than in bulk soils, leading to the homogeneity of bacterial communities that were resistant or prone to TCF biodegradation. Mantel test and redundancy analysis suggested a significant enrichment of dominant species Massilia belonging to Proteobacteria phyla, which in turn affecting TCF translocation and accumulation in maize seedling tissues. This study provided new insight into the biogeochemical fate of TCF in maize seedling and the responsible rhizobacterial community in soil TCF absorption and translocation.


Assuntos
Microbiota , Triclorfon , Triclorfon/metabolismo , Zea mays/metabolismo , Plântula/metabolismo , Solo , Raízes de Plantas/metabolismo , Rizosfera , Fósforo/metabolismo , Microbiologia do Solo
16.
Sci Total Environ ; 862: 160857, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36521606

RESUMO

In previous works, both tannic acid (TA) and organosilane-based passivators have been proven to possess good inhibition effects on pyrite oxidation, which could effectively prevent acid mine drainage (AMD) generation at the source. However, the hydrophilicity of TA passivation film and the complex coating process of organosilane-based passivators (high temperature conditions were required during the process carried out) may limit their further practical use. Therefore, to achieve the purpose of better coating treatment of pyrite under mild conditions, TA and γ-mercaptopropyltrimethoxysilane (PropS-SH) were introduced to synergistically passivate pyrite in this work. Electrochemistry tests and chemical leaching experiments both confirmed that PropS-SH-TA coated pyrite had better oxidation resistance than raw pyrite and single PropS-SH or TA coated pyrite. Additionally, the analyses of scanning electron microscopy (SEM) measurements and static water contact angle tests demonstrated that a scaly coating was formed on PropS-SH-TA coated pyrite surface, which may be the reason for the significant improvement of its surface hydrophobicity. Finally, the study on the film-forming mechanism of PropS-SH-TA composite passivator displayed that the benzoquinone derivatives formed by TA could copolymerize with PropS-SH through Michael addition or Schiff base reaction, which constructed a dense hydrophobic film on pyrite surface. The newly formed composite film could provide a better oxidation barrier for pyrite based on TA passivation film.


Assuntos
Ferro , Compostos de Organossilício , Ferro/química , Sulfetos/química , Oxirredução
17.
Environ Pollut ; 319: 120953, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36584858

RESUMO

Phosphate-solubilizing microorganisms (PSMs) are critically important for increasing soil phosphate (P) and decreasing lead (Pb) bioavailability during microbial-induced phosphate precipitation (MIPP). However, their relative contributions to the indigenous soil microbial communities and P-cycling genes during the MIPP process remain unclear. In this study, inoculation of the PSM P. oxalicum in hydroxyapatite-cultured and Pb-contaminated soil increased soil phosphatase activities, available P (AP) concentrations and reduced available Pb levels. Metagenomics revealed a 3.9-44.0% increase in the abundance of P-cycling genes by P. oxalicum inoculation. No P-cycling genes were assigned to Penicillium. While P. oxalicum increased the complexity of microbial community co-occurrence networks, and improved the directly interrelationships between Penicillium and genera containing P-cycling gene. These results suggesting that P. oxalicum obviously positively affected the regulation of indigenous P-cycling functional communities during the MIPP process. Inorganic P solubilization genes (gcd, ppa, and ppx) have been shown to affect soil AP, suggesting that inorganic P solubilization is the major driver of Pb immobilization improvement following P. oxalicum inoculation. These results enhance our understanding of the significant ecological role of PSMs in governing soil P-cycling and alleviating Pb2+ biotoxicity during the MIPP process.


Assuntos
Microbiota , Penicillium , Poluentes do Solo , Fosfatos/química , Solo/química , Chumbo , Microbiologia do Solo , Poluentes do Solo/química , Durapatita
18.
New Phytol ; 237(3): 734-745, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36324147

RESUMO

Legumes such as soybean are considered important crops as they provide proteins and oils for humans and livestock around the world. Different from other crops, leguminous crops accumulate nitrogen (N) for plant growth through symbiotic nitrogen fixation (SNF) in coordination with rhizobia. A number of studies have shown that efficient SNF requires the cooperation of other nutrients, especially phosphorus (P), a nutrient deficient in most soils. During the last decades, great progress has been made in understanding the molecular mechanisms underlying the interactions between SNF and P nutrition, specifically through the identification of transporters involved in P transport to nodules and bacteroids, signal transduction, and regulation of P homeostasis in nodules. These studies revealed a distinct N-P interaction in leguminous crops, which is characterized by specific signaling cross talk between P and SNF. This review aimed to present an updated picture of the cross talk between N fixation and P nutrition in legumes, focusing on soybean as a model crop, and Medicago truncatula and Lotus japonicus as model plants. We also discuss the possibilities for enhancing SNF through improving P nutrition, which are important for high and sustainable production of leguminous crops.


Assuntos
Lotus , Medicago truncatula , Humanos , Fixação de Nitrogênio/fisiologia , Lotus/metabolismo , Medicago truncatula/metabolismo , Glycine max/metabolismo , Simbiose/fisiologia , Produtos Agrícolas/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo
19.
J Exp Bot ; 74(3): 1140-1156, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36455868

RESUMO

Increased root secretion of H+ is a known strategy in plant adaption to low phosphorus (P) stress as it enhances mobilization of sparingly soluble P sources in the soil. However, our knowledge of the full effects induced by this enhanced acidification of the rhizosphere remains incomplete. In this study we found that P deficiency increased the net H+ flux rate from soybean (Glycine max) roots. Among the eight H+-pyrophosphatase (GmVP) genes in the soybean genome, GmVP2 showed the highest expression level under low P conditions. Transient expression of a GmVP2-GFP construct in tobacco (Nicotiana tabacum) leaves, together with functional characterization of GmVP2 in transgenic soybean hairy roots demonstrated that it encodes a plasma-membrane transporter that mediates H+ exudation. Overexpression of GmVP2 in Arabidopsis resulted in enhanced root H+ exudation, promoted root growth, and improved the utilization of sparingly soluble Ca-P. The improved root growth caused by GmVP2-overexpression might be due to the differential expression of genes related to hormone and flavonoid metabolism, and to root development. Overexpression of GmVP2 also changed the structure of the rhizospheric microbial community, as reflected by a preferential accumulation of Acidobacteria. Overall, our results suggest that GmVP2 mediates H+ exudation in the root response to Pi starvation, and that this influences plant growth, the mobilization sparingly soluble P-sources, and the structure of the microbial community in a coordinated manner.


Assuntos
Arabidopsis , Fósforo , Fósforo/metabolismo , Solo/química , Prótons , Rizosfera , Raízes de Plantas/metabolismo , Arabidopsis/fisiologia
20.
IEEE Trans Neural Netw Learn Syst ; 34(11): 9088-9101, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35263264

RESUMO

Pansharpening refers to the fusion of a panchromatic (PAN) image with a high spatial resolution and a multispectral (MS) image with a low spatial resolution, aiming to obtain a high spatial resolution MS (HRMS) image. In this article, we propose a novel deep neural network architecture with level-domain-based loss function for pansharpening by taking into account the following double-type structures, i.e., double-level, double-branch, and double-direction, called as triple-double network (TDNet). By using the structure of TDNet, the spatial details of the PAN image can be fully exploited and utilized to progressively inject into the low spatial resolution MS (LRMS) image, thus yielding the high spatial resolution output. The specific network design is motivated by the physical formula of the traditional multi-resolution analysis (MRA) methods. Hence, an effective MRA fusion module is also integrated into the TDNet. Besides, we adopt a few ResNet blocks and some multi-scale convolution kernels to deepen and widen the network to effectively enhance the feature extraction and the robustness of the proposed TDNet. Extensive experiments on reduced- and full-resolution datasets acquired by WorldView-3, QuickBird, and GaoFen-2 sensors demonstrate the superiority of the proposed TDNet compared with some recent state-of-the-art pansharpening approaches. An ablation study has also corroborated the effectiveness of the proposed approach. The code is available at https://github.com/liangjiandeng/TDNet.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...