Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(32): 7149-7156, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37540032

RESUMO

Superlattice potentials imposed on graphene can alter its Dirac states, enabling the realization of various quantum phases. We report the experimental observation of a replica Dirac cone at the Brillouin zone center induced by a superlattice in heavily doped graphene with Gd intercalation using angle-resolved photoemission spectroscopy (ARPES). The replica Dirac cone arises from the (√3× âˆš3)R30° superlattice formed by the intervalley coupling of two nonequivalent valleys (e.g., the Kekulé-like distortion phase), accompanied by a bandgap opening. According to the findings, the replica Dirac band in Gd-intercalated graphene disappears beyond a critical temperature of 30 K and can be suppressed by potassium adsorption. The modulation of the replica Dirac band is primarily attributable to the residual frozen gas, which can act as a source of intervalley scattering at temperatures below 30 K. Our results highlight the persistence of the hidden Kekulé-like phase within the heavily doped graphene, enriching our current understanding of its replica Dirac Fermions.

2.
Nanomaterials (Basel) ; 13(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37177078

RESUMO

Ferroelectric materials have received great attention in the field of data storage, benefiting from their exotic transport properties. Among these materials, the two-dimensional (2D) In2Se3 has been of particular interest because of its ability to exhibit both in-plane and out-of-plane ferroelectricity. In this article, we realized the molecular beam epitaxial (MBE) growth of ß-In2Se3 films on bilayer graphene (BLG) substrates with precisely controlled thickness. Combining in situ scanning tunneling microscopy (STM) and angle-resolved photoemission spectroscopy (ARPES) measurements, we found that the four-monolayer ß-In2Se3 is a semiconductor with a (9 × 1) reconstructed superlattice. In contrast, the monolayer ß-In2Se3/BLG heterostructure does not show any surface reconstruction due to the interfacial interaction and moiré superlattice, which instead results in a folding Dirac cone at the center of the Brillouin zone. In addition, we found that the band gap of In2Se3 film decreases after potassium doping on its surface, and the valence band maximum also shifts in momentum after surface potassium doping. The successful growth of high-quality ß-In2Se3 thin films would be a new platform for studying the 2D ferroelectric heterostructures and devices. The experimental results on the surface reconstruction and band structures also provide important information on the quantum confinement and interfacial effects in the epitaxial ß-In2Se3 films.

3.
Sci Bull (Beijing) ; 68(10): 990-997, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37100643

RESUMO

The itinerant ferromagnetism can be induced by a van Hove singularity (VHS) with a divergent density of states at Fermi level. Utilizing the giant magnified dielectric constant εr of SrTiO3(111) substrate with cooling, here we successfully manipulated the VHS in the epitaxial monolayer (ML) 1T-VSe2 film approaching to Fermi level via the large interfacial charge transfer, and thus induced a two-dimensional (2D) itinerant ferromagnetic state below 3.3 K. Combining the direct characterization of the VHS structure via angle-resolved photoemission spectroscopy (ARPES), together with the theoretical analysis, we ascribe the manipulation of VHS to the physical origin of the itinerant ferromagnetic state in ML 1T-VSe2. Therefore, we further demonstrated that the ferromagnetic state in the 2D system can be controlled through manipulating the VHS by engineering the film thickness or replacing the substrate. Our findings clearly evidence that the VHS can serve as an effective manipulating degree of freedom for the itinerant ferromagnetic state, expanding the application potentials of 2D magnets for the next-generation information technology.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Humanos , Imãs , Temperatura Baixa
4.
J Phys Chem Lett ; 13(40): 9396-9403, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36190902

RESUMO

The quantum interference patterns induced by impurities in graphene can form the (√3 × âˆš3)R30° superlattice with intervalley scattering. This superlattice can lead to the folded Dirac cone at the center of Brillouin zone by coupling two non-equivalent valleys. Using angle-resolved photoemission spectroscopy (ARPES), we report the observation of suppression of the folded Dirac cone in mono- and bilayer graphene upon potassium doping. The intervalley coupling with chiral symmetry broken can persist upon a light potassium-doped level but be ruined at the heavily doped level. Meanwhile, the folded Dirac cone can be suppressed by the renormalization of the Dirac band with potassium doping. Our results demonstrate that the suppression of the intervalley scattering pattern by potassium doping could pave the way toward the realization of novel chiraltronic devices in superlattice graphene.

5.
Nanomaterials (Basel) ; 11(12)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34947567

RESUMO

Graphene was reported as the first-discovered two-dimensional material, and the thermal decomposition of SiC is a feasible route to prepare graphene films. However, it is difficult to obtain a uniform single-layer graphene avoiding the coexistence of multilayer graphene islands or bare substrate holes, which give rise to the degradation of device performance and becomes an obstacle for the further applications. Here, with the assistance of nitrogen plasma, we successfully obtained high-quality single-layer and bilayer graphene with large-scale and uniform surface via annealing 4H-SiC(0001) wafers. The highly flat surface and ordered terraces of the samples were characterized using in situ scanning tunneling microscopy. The Dirac bands in single-layer and bilayer graphene were measured using angle-resolved photoemission spectroscopy. X-ray photoelectron spectroscopy combined with Raman spectroscopy were used to determine the composition of the samples and to ensure no intercalation or chemical reaction of nitrogen with graphene. Our work has provided an efficient way to obtain the uniform single-layer and bilayer graphene films grown on a semiconductive substrate, which would be an ideal platform for fabricating two-dimensional devices based on graphene.

6.
Nano Lett ; 21(19): 8258-8265, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34570496

RESUMO

The scattering process induced by impurities in graphene plays a key role in transport properties. Especially, the disorder impurities can drive the ordered state with a hexagonal superlattice on graphene by electron-mediated interaction at a transition temperature. Using angle-resolved photoemission spectroscopy (ARPES), we reveal that the epitaxial monolayer and bilayer graphene with various impurities display global elastic intervalley scattering and quantum interference below the critical temperature (34 K), which leads to a set of new folded Dirac cones at the Brillouin-zone center by mixing two inequivalent Dirac cones. The Dirac electrons generated from intervalley scattering without chirality can be due to the breaking of the sublattice symmetry. In addition, the temperature-dependent ARPES measurements indicate the thermal damping of quantum interference patterns from Dirac electron scattering on impurities. Our results demonstrate that the electron scattering and interference induced by impurities can completely modulate the Dirac bands of graphene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...