Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 479: 135699, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39226683

RESUMO

Promising hyperspectral remote sensing exhibits substantial potential in monitoring soil heavy metal (SHM) contamination. Nevertheless, the local spatial perturbation effects induced by environmental factors introduce considerable variability in SHM distribution. This engenders non-stationary relationship between SHM concentrations and spectral reflectance, posing challenges for accurate inversion of SHM globally. Addressing this gap, a novel Hierarchical Residual Correction-based Hyperspectral Inversion Method (HRCHIM) is proposed for SHM, considering their spatial heterogeneity. Initially, a global model is constructed using ground hyperspectral data to predict SHM concentration, capturing overarching contamination trends. Subsequently, four hierarchical levels, segmented by residual standard deviation (SD) intervals, identify critical environmental factors via Geodetector. These factors inform local residual correction models, refining global model predictions. HRCHIM aims to synergize global trends and local stochasticity to enhance prediction accuracy and interpretation of SHM spatial heterogeneity. Validated through a case study of a Cadmium(Cd)-contaminated mine area, six critical environmental factors were identified, exhibiting significant differences across hierarchical levels. By incorporating hierarchical correction models, HRCHIM demonstrated superior inversion performance compared to other conventional methods, achieving optimal prediction accuracies (Rv2 = 0.94, RMSEv = 0.21, and RPDv = 4.11). This innovative method can facilitate more precise and targeted strategies for preventing and controlling SHM contamination.

2.
Sci Total Environ ; 946: 174021, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38897476

RESUMO

Conventional methods for identifying soil heavy metal (HM) pollution sources are limited to area scale, failing to accurately pinpoint sources at specific sites due to the spatial heterogeneity of HMs in mining areas. Furthermore, these methods primarily focus on existing solid waste polluted dumps, defined as "direct pollution sources", while neglecting existing HM pollution hotspots generated by historical anthropogenic activities (e.g., mineral development, industrial discharges), defined as "potential pollution sources". Addressing this gap, a novel remote sensing analysis method is proposed to identify both direct and potential pollution sources at site scale, considering source-sink relationships. Direct pollution sources are extracted using a supervised classification algorithm on high-resolution multispectral imagery. Potential pollution sources depend on the spatial distribution of HM pollution, mapped using a machine learning model with hyperspectral imagery. Additionally, a source identification algorithm is developed for gridded pollution source analysis. Validated through a case study in a cadmium (Cd)-polluted mine area, the proposed method successfully extracted 21 solid waste polluted dumps with an overall accuracy approaching 90 % and a Kappa coefficient of 0.80. Simultaneously, 4167 HM pollution hotspots were identified, achieving optimal inversion accuracy for Cd (Rv2 = 0.91, RMSEv = 4.27, and RPDv = 3.02). Notably, the spatial distribution patterns of these identified sources exhibited a high degree of similarity. Further analysis employing the identification algorithm indicated that 3 polluted dumps and 258 pollution hotspots were pollution sources for a selected high-value point of Cd content. This innovative method provides a valuable methodological reference for precise prevention and control of soil HM pollution.

3.
Biosci Biotechnol Biochem ; 83(10): 1807-1814, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31179846

RESUMO

WRINKLED1 (WRI1) belongs to AP2/EREBP transcription factor. Its function in dicots for fatty acids synthesis has been deeply studied, but its role in monocot, especially in rice, is still poorly understood. Here, with the overexpression of AtWRI1 in rice, we found its overexpression increased fatty acids content in vegetative organs and seed coat including aleurone layer (SCAL) but decreased fatty acids content in endosperm. Meanwhile, the overexpression of AtWRI1 increased starch content in endosperm. These results provide a new insight into the function of AtWRI1in monocot and make a previous basement for the study of the connection of fatty acids and starch synthesis in rice.


Assuntos
Proteínas de Arabidopsis/genética , Ácidos Graxos/biossíntese , Oryza/metabolismo , Amido/biossíntese , Fatores de Transcrição/genética , Endosperma/metabolismo , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/embriologia , Oryza/genética , Amido/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA