Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 933: 173155, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38735323

RESUMO

Climate change has induced substantial impact on the gross primary productivity (GPP) of terrestrial ecosystems by affecting vegetation phenology. Nevertheless, it remains unclear which among the mean rates of grass greening (RG), yellowing (RY), and the length of growing season (LOS) exhibit stronger explanatory power for GPP variations, and how RG and RY affect GPP variations under warming scenarios. Here, we explored the relationship between RG, RY, LOS, and GPP in arid Central Asia (ACA) from 1982 to 2019, elucidating the response mechanisms of RG, RY, and GPP to the mean temperature (TMP), vapor pressure deficit (VPD), precipitation (PRE), and soil moisture (SM). The results showed that the multi-year average length of greening (LG) in ACA was 22.7 days shorter than that of yellowing (LY) and the multi-year average GPP during LG (GPPlg) was 38.28 g C m-2 d -1 more than that of during LY (GPPly). RG and RY were positively correlated with GPPlg and GPPly, although the degree of correlation between RG and GPPlg was higher than that between RY and GPPly. Increases in RG and RY contributed to an increase in GPPlg (55.44 % of annual GPP) and GPPly (35.44 % of annual GPP). The correlation between RG and GPPlg was the strongest (0.49), followed by RY and GPPly (0.33), and LOS and GPP was the weakest (0.21). TMP, VPD, PRE, and SM primarily affected GPP by influencing RG and RY, rather than direct effects. The positive effects of TMP during LG (TMPlg), PRE during LG (PRElg), and SM during LG (SMlg) facilitated increases in RG and GPPlg, and higher VPD during LY (VPDly) and lower PRE during LY (PREly) accelerated increases in RY. Our study elucidated the impact of vegetation growth rate on GPP, thus providing an alternate method of quantifying the relationship between vegetation phenology and GPP.

2.
Eye Vis (Lond) ; 11(1): 12, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38561862

RESUMO

BACKGROUND: Near work is generally considered as a risk factor for myopia onset and progression. This study aimed to investigate the choroidal responses to a brief-period of near work in children and young adults. METHODS: Thirty myopic medical students (aged 18-28 years) and 30 myopic children (aged 8-12 years) participated in this study. The submacular total choroidal area (TCA), luminal area (LA), stromal area (SA), choroidal vascularity index (CVI) and choriocapillaris flow deficit (CcFD), as well as subfoveal choroidal thickness (SFCT) were measured with swept-source optical coherence tomography/optical coherence tomography angiography (SS-OCT/OCTA) before and immediately after 20 min, 40 min, 60 min of near work at a distance of 33 cm. RESULTS: In adults, 20 min of near work induced a significant reduction in SFCT (- 5.1 ± 6.5 µm), LA [(- 19.2 ± 18.6) × 103 µm2], SA [(- 8.2 ± 12.6) × 103 µm2] and TCA [(- 27.4 ± 24.9) × 103 µm2] (all P < 0.01). After 40 min of near work, LA was still reduced [(- 9.4 ± 18.3) × 103 µm2], accompanied with a decreased CVI (- 0.39% ± 0.70%) and an increased CcFD (0.30% ± 0.78%) (all P < 0.05). After 60 min of near work, CVI was still reduced (- 0.28% ± 0.59%), and CcFD was still increased (0.37% ± 0.75%) (all P < 0.05). In children, 20 min of near work induced a significant increase in CcFD (0.55% ± 0.64%), while 60 min of near work induced increases in SA [(7.2 ± 13.0) × 103 µm2] and TCA [(9.7 ± 25.3) × 103 µm2] and a reduction in CVI (- 0.28% ± 0.72%) (all P < 0.05). Children exhibited lower near work-induced LA and TCA reduction than adults, with a mean difference of - 0.86% and - 0.82%, respectively (all P < 0.05). CONCLUSIONS: The temporal characteristics and magnitude of changes of choroidal vascularity and choriocapillaris perfusion during near work was not identical between children and adults. The initial response to near work was observed in choriocapillaris in children, whereas it was observed in the medium- and large-sized vessels in adults. TRIAL REGISTRATION: Clinical Trial Registry (ChiCTR), ChiCTR2000040205. Registered on 25 November 2020, https://www.chictr.org.cn/bin/project/edit?pid=64501 .

3.
J Neurosci ; 43(48): 8231-8242, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37751999

RESUMO

Dopamine is a key neurotransmitter in the signaling cascade controlling ocular refractive development, but the exact role and site of action of dopamine D1 receptors (D1Rs) involved in myopia remains unclear. Here, we determine whether retinal D1Rs exclusively mediate the effects of endogenous dopamine and systemically delivered D1R agonist or antagonist in the mouse form deprivation myopia (FDM) model. Male C57BL/6 mice subjected to unilateral FDM or unobstructed vision were divided into the following four groups: one noninjected and three groups that received intraperitoneal injections of a vehicle, D1R agonist SKF38393 (18 and 59 nmol/g), or D1R antagonist SCH39166 (0.1 and 1 nmol/g). The effects of these drugs on FDM were further assessed in Drd1-knock-out (Drd1-KO), retina-specific conditional Drd1-KO (Drd1-CKO) mice, and corresponding wild-type littermates. In the visually unobstructed group, neither SKF38393 nor SCH39166 affected normal refractive development, whereas myopia development was attenuated by SKF38393 and enhanced by SCH39166 injections. In Drd1-KO or Drd1-CKO mice, however, these drugs had no effect on FDM development, suggesting that activation of retinal D1Rs is pertinent to myopia suppression by the D1R agonist. Interestingly, the development of myopia was unchanged by either Drd1-KO or Drd1-CKO, and neither SKF38393 nor SCH39166 injections, nor Drd1-KO, affected the retinal or vitreal dopamine and the dopamine metabolite DOPAC levels. Effects on axial length were less marked than effects on refraction. Therefore, activation of D1Rs, specifically retinal D1Rs, inhibits myopia development in mice. These results also suggest that multiple dopamine D1R mechanisms play roles in emmetropization and myopia development.SIGNIFICANCE STATEMENT While dopamine is recognized as a "stop" signal that inhibits myopia development (myopization), the location of the dopamine D1 receptors (D1Rs) that mediate this action remains to be addressed. Answers to this key question are critical for understanding how dopaminergic systems regulate ocular growth and refraction. We report here the results of our study showing that D1Rs are essential for controlling ocular growth and myopia development in mice, and for identifying the retina as the site of action for dopaminergic control via D1Rs. These findings highlight the importance of intrinsic retinal dopaminergic mechanisms for the regulation of ocular growth and suggest specific avenues for exploring the retinal mechanisms involved in the dopaminergic control of emmetropization and myopization.


Assuntos
Dopamina , Miopia , Masculino , Camundongos , Animais , Dopamina/metabolismo , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Camundongos Endogâmicos C57BL , Miopia/genética , Miopia/metabolismo , Retina/metabolismo , Receptores de Dopamina D1/metabolismo
4.
Front Plant Sci ; 14: 1074405, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844100

RESUMO

Under global warming, the gradual pattern of spring phenology along elevation gradients (EG) has significantly changed. However, current knowledge on the phenomenon of a more uniform spring phenology is mainly focused on the effect of temperature and neglected precipitation. This study aimed to determine whether a more uniform spring phenology occurs along EG in the Qinba Mountains (QB) and explore the effect of precipitation on this pattern. We used Savitzky-Golay (S-G) filtering to extract the start of season (SOS) of the forest from the MODIS Enhanced Vegetation Index (EVI) during 2001-2018 and determined the main drivers of the SOS patterns along EG by partial correlation analyses. The SOS showed a more uniform trend along EG in the QB with a rate of 0.26 ± 0.01 days 100 m-1 per decade during 2001-2018, but there were differences around 2011. A delayed SOS at low elevations was possibly due to the reduced spring precipitation (SP) and spring temperature (ST) between 2001 and 2011. Additionally, an advanced SOS at high elevations may have been caused by the increased SP and reduced winter temperature (WT). These divergent trends contributed to a significant uniform trend of SOS with a rate of 0.85 ± 0.02 days 100 m-1 per decade. Since 2011, significantly higher SP (especially at low elevations) and rising ST advanced the SOS, and the SOS at lower altitudes was more advanced than at higher altitudes, resulting in greater SOS differences along EG (0.54 ± 0.02 days 100 m-1 per decade). The SP determined the direction of the uniform trend in SOS by controlling the SOS patterns at low elevations. A more uniform SOS may have important effects on local ecosystem stability. Our findings could provide a theoretical basis for establishing ecological restoration measures in areas experiencing similar trends.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...