Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 131: 104999, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31319293

RESUMO

Widely distributed fluorocarboxylic acids have aroused worldwide environmental concerns due to its toxicity, persistence, and bioaccumulation. Enzyme-based eco-friendly biodegradation techniques have become increasingly important in treating fluorocarboxylic acids. Here we utilized in silico and in vitro approaches to investigate the defluorination mechanism of fluoroacetate dehalogenase (FAcD) toward monofluoropropionic acids at atomic-level. The experimentally determined kcat and kM for defluorination of 2-fluoropropionic acid are 330 ±â€¯60 min-1 and 6.12 ±â€¯0.13 mM. The in silico results demonstrated positive/negative correlations between activation barriers and structural parameters (e.g. distance and angle) under different enzymatic conformations. We also screened computationally and tested in vitro (enzyme assay and kinetic study) the catalytic proficiency of FAcD toward polyfluoropropionic acids and perfluoropropionic acids which are known to be challenging for enzymatic degradation. The results revealed potential degradation activity of FAcD enzyme toward 2,3,3,3-tetrafluoropropionic acids. Our work will initiate the development of a new "integrated approach" for enzyme engineering to degrade environmentally persistent fluorocarboxylic acids.


Assuntos
Recuperação e Remediação Ambiental/métodos , Halogenação , Hidrolases/química , Catálise , Simulação por Computador , Técnicas In Vitro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA