Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35806456

RESUMO

Receptor-like kinases (RLKs) are a large group of pattern recognition receptors (PRRs) and play a critical role in recognizing pathogens, transducing defense signals, and mediating the activation of immune defense responses. Although extensively studied in the model plant Arabidopsis, studies of RLKs in crops, including soybean, are limited. When a BAK1-interacting receptor-like kinase (BIR1) homolog (referred to as GmBIR1 hereafter) was silenced by the BPMV (Bean pod mottle virus)-induced gene silencing (BPMV-VIGS), it resulted in phenotypes that were reminiscent of constitutively activated defense responses, including a significantly stunted stature with observable cell death on the leaves of the silenced plants. In addition, both SA and H2O2 were over-accumulated in the leaves of the GmBIR1-silenced plants. Consistent with this autoimmune phenotype, GmBIR1-silenced plants exhibited significantly enhanced resistance to both Pseudomonas syringae pv. glycinea (Psg) and Soybean mosaic virus (SMV), two different types of pathogens, compared to the vector control plants. Together, our results indicated that GmBIR1 is a negative regulator of immunity in soybean and the function of BIR1 homologs is conserved in different plant species.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Doenças das Plantas , Pseudomonas syringae/fisiologia , Glycine max/fisiologia
2.
Plant Sci ; 292: 110386, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32005391

RESUMO

The plasma membrane (PM)-localized receptor-like kinases (RLKs) play important roles in pathogen defense. One of the first cloned RLKs is the Arabidopsis receptor kinase FLAGELLIN SENSING 2 (FLS2), which specifically recognizes a conserved 22 amino acid N-terminal sequence of Pseudomonas syringae pv.tomato DC3000 (Pst) flagellin protein (flg22). Although extensively studied in Arabidopsis, the functions of RLKs in crop plants remain largely uninvestigated. To understand the roles of RLKs in soybean (Glycine max), GmFLS2 was silenced via virus induced gene silencing (VIGS) mediated by Bean pod mottle virus (BPMV). No significant morphological differences were observed between GmFLS2-silenced plants and the vector control plants. However, silencing GmFLS2 significantly enhanced the susceptibility of the soybean plants to Pseudomonas syringae pv.glycinea (Psg). Kinase activity assay showed that silencing GmFLS2 significantly reduced the phosphorylation level of GmMPK6 in response to flg22 treatment. However, reduced phosphorylation level of both GmMPK3 and GmMPK6 in response to Psg infection was observed in GmFLS2-silenced plants, implying that defense response is likely transduced through activation of the downstream GmMAPK signaling pathway upon recognition of bacterial pathogen by GmFLS2. The core peptides of flg22 from Pst and Psg were highly conserved and only 4 amino acid differences were seen at their N-termini. Interestingly, it appeared that the Psg-flg22 was more effective in activating soybean MAPKs than activating Arabidopsis MAPKs, and conversely, Pst-flg22 was more effective in activating Arabidopsis MAPKs than activating soybean MAPKs, suggesting that the cognate recognition is more potent than heterologous recognition in activating downstream signaling. Taken together, our results suggest that the function of FLS2 is conserved in immunity against bacteria pathogens across different plant species.


Assuntos
Inativação Gênica , Glycine max/genética , Glycine max/microbiologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas Quinases/genética , Pseudomonas syringae/fisiologia , Comovirus , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Proteínas Quinases/metabolismo
3.
Plant Physiol ; 178(2): 907-922, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30158117

RESUMO

MAPK signaling pathways play critical roles in plant immunity. Here, we silenced multiple genes encoding MAPKs using virus-induced gene silencing mediated by Bean pod mottle virus to identify MAPK genes involved in soybean (Glycine max) immunity. Surprisingly, a strong hypersensitive response (HR) cell death was observed when soybean MAPK KINASE KINASE1 (GmMEKK1), a homolog of Arabidopsis (Arabidopsis thaliana) MEKK1, was silenced. The HR was accompanied by the overaccumulation of defense signaling molecules, salicylic acid (SA) and hydrogen peroxide. Genes involved in primary metabolism, translation/transcription, photosynthesis, and growth/development were down-regulated in GmMEKK1-silenced plants, while the expression of defense-related genes was activated. Accordingly, GmMEKK1-silenced plants were more resistant to downy mildew (Peronospora manshurica) and Soybean mosaic virus compared with control plants. Silencing GmMEKK1 reduced the activation of GmMPK6 but enhanced the activation of GmMPK3 in response to flg22 peptide. Unlike Arabidopsis MPK4, GmMPK4 was not activated by either flg22 or SA. Interestingly, transient overexpression of GmMEKK1 in Nicotiana benthamiana also induced HR. Our results indicate that GmMEKK1 plays both positive and negative roles in immunity and appears to differentially activate downstream MPKs by promoting GmMPK6 activation but suppressing GmMPK3 activation in response to flg22. The involvement of GmMPK4 kinase activity in cell death and in flg22- or SA-triggered defense responses in soybean requires further investigation.


Assuntos
Arabidopsis/enzimologia , Glycine max/enzimologia , MAP Quinase Quinase Quinase 1/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Nicotiana/enzimologia , Doenças das Plantas/imunologia , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/fisiologia , Morte Celular , Resistência à Doença , MAP Quinase Quinase Quinase 1/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Peronospora/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glycine max/genética , Glycine max/imunologia , Glycine max/fisiologia , Nicotiana/genética , Nicotiana/imunologia
4.
ACS Appl Mater Interfaces ; 9(34): 28331-28338, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28809473

RESUMO

Imaging-based total bacterial count and type identification of bacteria play crucial roles in clinical diagnostics, public health, biological and medical science, and environmental protection. Herein, we designed and synthesized a series of tetraphenylethenes (TPEs) functionalized with one or two aldehyde, carboxylic acid, and quaternary ammonium groups, which were successfully used as fluorescent materials for rapid and efficient staining of eight kinds of representative bacterial species, including pathogenic bacteria Vibrio cholera, Klebsiella pneumoniae, and Listeria monocytogenes and potential bioterrorism agent Yersinia pestis. By comparing the fluorescence intensity changes of the aggregation-induced-emission (AIE) materials before and after bacteria incubation, the sensing mechanisms (electrostatic versus hydrophobic interactions) were simply discussed. Moreover, the designed AIE materials were successfully used as an efficient artificial tongue for bacteria discrimination, and all of the bacteria tested were identified via linear discriminant analysis. Our current work provided a general method for simultaneous broad-spectrum bacterial imaging and species discrimination, which is helpful for bacteria surveillance in many fields.


Assuntos
Bactérias , Ácidos Carboxílicos , Coloração e Rotulagem , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA