Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theriogenology ; 211: 212-223, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37659252

RESUMO

The purpose of this study was to identify proteins associated with differences in the freezing tolerance of sheep sperm and to analyze their functions. Qualified fresh semen from four breeds of rams, the Australian White, white-head Dorper, Black-head Dorper, and Hu sheep breeds, were selected for cryopreservation. The sperm freezing tolerance was investigated by evaluation of the overall vitality, progressive vitality, and rapidly advance vitality of the sperm. A differential model of sperm freezing tolerance was constructed for sheep breeds showing significant differences. Differentially expressed proteins associated with sperm freezing tolerance were identified using iTRAQ and the protein functions were analyzed. It was found that sperm freezing tolerance was best in Hu sheep and worst in white-head Dorper sheep. These two breeds were used for the construction of a model based on differences in freezing tolerance and the identification of sperm proteins expressed differentially before freezing and after thawing. A total of 128 differentially expressed proteins (88 up-regulated and 40 down-regulated) were identified before freezing and after thawing in Hu sheep sperm (fresh/frozen Hu sheep sperm referred to as HL vs. HF), while 219 differentially expressed proteins (106 up-regulated and 113 down-regulated) were identified in white-head Dorper sheep (fresh/frozen white-head Dorper sheep sperm referred to as WL vs. WF). A comparison of these differentially expressed proteins showed that 57 proteins overlapped between the two breeds while 71 were only expressed in Hu sheep and 162 were only expressed in white-head Dorper sheep. Functional annotation and enrichment analyses of differentially expressed proteins down-regulated in Hu sheep involved in phosphorylation of phosphatidylinositol phosphate kinases, regulation of GTPase activity and glycolysis/gluconeogenesis signaling pathway. Up-regulated proteins of Hu sheep participated in oxidoreductase activity and oxidative phosphorylation process of sperm freezing. Furthermore, down-regulated in white-head Dorper sheep involved in the metabolic regulation of carbohydrate and nuclear sugar metabolism. Up-regulated proteins of white-head Dorper sheep involved in the ferroptosis and oxidative phosphorylation pathways. Collectively, These proteins were found to participate mainly in oxidative phosphorylation as well as phosphorylation and metabolic processes in the mitochondria to affect the freezing tolerance of sheep sperm.


Assuntos
Sêmen , Espermatozoides , Masculino , Ovinos , Animais , Congelamento , Austrália , Carneiro Doméstico , Fosforilação Oxidativa
2.
Plants (Basel) ; 12(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36840246

RESUMO

Rice (Oryza sativa L.), one of the most important food crops worldwide, is a facultative short-day (SD) plant in which flowering is modulated by seasonal and temperature cues. The photoperiodic molecular network is the core network for regulating flowering in rice, and is composed of photoreceptors, a circadian clock, a photoperiodic flowering core module, and florigen genes. The Hd1-DTH8-Ghd7-PRR37 module, a photoperiodic flowering core module, improves the latitude adaptation through mediating the multiple daylength-sensing processes in rice. However, how the other photoperiod-related genes regulate daylength-sensing and latitude adaptation remains largely unknown. Here, we determined that mutations in the photoreceptor and circadian clock genes can generate different daylength-sensing processes. Furthermore, we measured the yield-related traits in various mutants, including the main panicle length, grains per panicle, seed-setting rate, hundred-grain weight, and yield per panicle. Our results showed that the prr37, elf3-1 and ehd1 mutants can change the daylength-sensing processes and exhibit longer main panicle lengths and more grains per panicle. Hence, the PRR37, ELF3-1 and Ehd1 locus has excellent potential for latitude adaptation and production improvement in rice breeding. In summary, this study systematically explored how vital elements of the photoperiod network regulate daylength sensing and yield traits, providing critical information for their breeding applications.

3.
Anim Genet ; 54(3): 225-238, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36811249

RESUMO

The FecB mutation in the sheep BMPRIB is strongly correlated with high ovulation traits but its mechanism remains unclear. This study explored differentially expressed genes (DEGs) and their associated molecular mechanisms that may be involved in FecB mutation-induced high ovulation from the perspective of the hypothalamic-pituitary-gonadal (HPG) axis by conducting a systematic review and meta-analysis. The PubMed, EMBASE, CNKI, WanFang, and CBM databases were searched for eligible articles published before August 2022, focusing on mRNA sequencing of different tissues in the HPG axis in sheep with different FecB genotypes. A total of 6555 DEGs were identified from the analysis of six published articles and experimental results from our laboratory. The DEGs were screened by vote-counting rank and robust rank aggregation. Among these, in the follicular phase, FKBP5, CDCA7 and CRABP1 were upregulated in the hypothalamus. INSM2 was upregulated, while LDB3 was downregulated in the pituitary. CLU, SERPINA14, PENK, INHA and STAR were upregulated, while FERMT2 and NPY1R were downregulated in the ovary. On the HPG axis, TAC1 was upregulated and NPNT was downregulated. Many DEGs were found in sheep with different FecB genotypes. The genes FKBP5, CDCA7, CRABP1, INSM2, LDB3, CLU, SERPINA14, PENK, INHA, STAR, FERMT2, NPY1R, TAC1 and NPNT, may be associated with FecB mutation-induced high ovulation in different tissues. These candidate genes will further improve the mechanism of multiple fertility traits induced by the FecB mutation from the perspective of the HPG axis.


Assuntos
Fertilidade , Ovulação , Feminino , Ovinos/genética , Animais , RNA Mensageiro/genética , Genótipo , Fertilidade/genética , Ovulação/genética , Fenótipo
4.
Research (Wash D C) ; 2022: 9890686, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36349337

RESUMO

Conductive polymer fibers/wires (CPFs) are important materials in modern technologies due to their unique one-dimension geometry, electrical conductivity, and flexibility. However, the advanced applications of current CPFs are limited by their low electrical conductivities (<500 S/m) and poor interfacial interactions between conductive fillers (e.g., graphite) and polymers. Therefore, in current electrical applications, metal wires/foils like copper and aluminum are the most frequently utilized conductive fibers/wires instead of the inferior conductive CPFs. This work successfully addresses the heavy phase segregation between polymers and conductive inorganic materials to obtain semiliquid metal polymer fibers (SLMPFs) which exhibit an ultrahigh electrical conductivity (over 106 S/m), remarkable thermal processability, and considerable mechanical performance (Young's modulus: ~300 MPa). Semiliquid metal (gallium-tin alloy) with tunable viscosities is the key to achieve the excellent miscibility between metals and polymers. Both the rheological results and numerical simulations demonstrate the critical viscosity matching for the successful preparation of the fibers. More importantly, the fibers are adapted with classic polymer melt-processing like melt injection, which indicates the scalable production of the highly conductive fibers. The SLMPFs are highly promising substitutes for metal wires/fibers in modern electrical applications such as electricity transmission, data communication, and underwater works.

5.
Dis Markers ; 2022: 3823368, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35942131

RESUMO

Objective: This study focused on elucidating the influence of early multidisciplinary collaboration on preventing intensive care unit- (ICU-) acquired weakness (AW) in critically ill patients (CIPs). Methods: Ninety-five CIPs admitted between December 2018 and December 2021 were selected and assigned to the following two groups according to the intervention pattern: the control group (the Con; n = 40) treated with routine early rehabilitation intervention, and the research group (the Res; n = 55) intervened by early multidisciplinary collaborative intervention. The incidence of complications (ICU-AW, deep vein thrombosis (DVT), and pressure ulcers (PSs)) and recovery indices (days of ventilator use, ICU treatment time, and length of hospital stay (LOS)) were recorded. Besides, patients' activity function and quality of life (QoL) were evaluated and compared, among which the former was evaluated by the Barthel Index (BI), ICU Mobility Scale (IMS), and Medical Research Council (MRC) Scale, and the latter was assessed by the World Health Organization Quality of Life Assessment (100-item version) (WHOQOL-100). Results: The data identified statistically a lower incidence of complications (ICU-AW, DVT, and PSs) and shorter time of ventilator use, ICU residence, and LOS in the Res compared with the Con. In addition, BI, IMS, MRC, and WHOQOL-100 scores in the Res elevated statistically after treatment and were higher than those of the Con. Conclusions: Early multidisciplinary collaboration can validly prevent ICU-AW in CIPs, reduce the incidence of DVT and PSs, and promote patients' rehabilitation, mobility, and QoL.


Assuntos
Estado Terminal , Qualidade de Vida , Humanos , Unidades de Terapia Intensiva , Tempo de Internação , Debilidade Muscular/etiologia , Debilidade Muscular/prevenção & controle
6.
Reprod Domest Anim ; 57(12): 1623-1635, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36030089

RESUMO

Hanper ewes that were either monotocous or polytocous provided ovarian follicles of diameter >3 mm in the follicular phase and, in the luteal phase, samples of corpora lutea that had developed from follicles of diameter >3 mm. Differentially expressed mRNAs (monotocous versus polytocous) were then identified, and their functions were predicted. Results showed that 1508 mRNAs were differentially expressed in the follicular phase, with 885 being in the luteal tissues. Those which were differentially expressed in the follicular phase were mainly involved in the regulation of the ferroptosis and lysosome signalling pathways, whereas, for the luteal tissue, the differentially expressed mRNAs were mainly involved in the regulation of steroid biosynthesis. Based on the results, it was inferred that these pathways could explain variations in the fecundity of sheep.


Assuntos
Folículo Ovariano , Ovário , Ovinos/genética , Feminino , Animais , Ovário/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Folículo Ovariano/fisiologia , Corpo Lúteo/fisiologia , Fertilidade/genética
7.
Life (Basel) ; 12(7)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35888110

RESUMO

Seed germination is a critical stage during the life cycle of plants. It is well known that germination is regulated by a series of internal and external factors, especially plant hormones. In Arabidopsis, many germination-related factors have been identified, while in rice, the important crop and monocot model species and the further molecular mechanisms and regulatory networks controlling germination still need to be elucidated. Hormonal signals, especially those of abscisic acid (ABA) and gibberellin (GA), play a dominant role in determining whether a seed germinates or not. The balance between the content and sensitivity of these two hormones is the key to the regulation of germination. In this review, we present the foundational knowledge of ABA and GA pathways obtained from germination research in Arabidopsis. Then, we highlight the current advances in the identification of the regulatory genes involved in ABA- or GA-mediated germination in rice. Furthermore, other plant hormones regulate seed germination, most likely by participating in the ABA or GA pathways. Finally, the results from some regulatory layers, including transcription factors, post-transcriptional regulations, and reactive oxygen species, are also discussed. This review aims to summarize our current understanding of the complex molecular networks involving the key roles of plant hormones in regulating the seed germination of rice.

8.
Bioengineered ; 13(4): 9060-9070, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35301927

RESUMO

Mesenchymal stem cells (MSCs) have a wide range of anti-inflammatory and immunomodulatory effects and have been observed to have potential therapeutic potential in the clinical treatment of various diseases. We pretreated lung cancer cells A549 with tumor necrosis factor (TNF-α), knocked down the key chemokine receptor CXCR4 on MSCs using lentivirus, and induced acute respiratory distress syndrome (ARDS) mouse model using lipopolysaccharide (LPS) and CXCL12 expression in vivo by adeno-associated virus (AAV-rh10) infection in mice. By co-culturing the MSCs with A549 and in vivo experiments, we observed the effects of MSCs on cell biological functions after inflammatory stimulation, oxidative stress, and the amelioration of lung injury in ARDS mice. TNF-α inhibited A549 proliferation and promoted apoptosis, scorch death-related factor activity, and oxidative stress factor were increased and CXCL12 levels in the cell supernatant were decreased. The co-culture of MSCs was able to increase cell activity and decrease oxidative stress factor levels, and this effect was not present after the knockdown of CXCR4 in MSCs. In vivo transplantation of MSCs significantly attenuated lung injury in ARDS, inhibited serum pro-inflammatory factors in mice, and down-regulated expression of apoptotic and focal factors in lung tissues while blocking CXCR4 or CXCL12 lost the repairing effect of MSCs on ARDS lung tissues. After the co-culture of MSC and lung cancer cells, the expression of CXCR4 on the surface of lung cancer cells was significantly increased, and more CXCR4 and CXCL12 acted together to activate more pro-survival pathways and inhibit apoptosis induced by TNF-α.


Assuntos
Lesão Pulmonar , Neoplasias Pulmonares , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Síndrome do Desconforto Respiratório , Células Epiteliais Alveolares , Animais , Apoptose , Lesão Pulmonar/metabolismo , Neoplasias Pulmonares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Síndrome do Desconforto Respiratório/terapia , Fator de Necrose Tumoral alfa/metabolismo
9.
Animals (Basel) ; 11(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201517

RESUMO

Litter size is a considerable quality that determines the production efficiency of mutton sheep. Therefore, revealing the molecular regulation of high and low fertility may aid the breeding process to develop new varieties of mutton sheep. CircRNAs are the important factors regulating follicular development, but their mechanism role in the regulation of litter size in Hanper sheep is not clear. In the present study, ovarian tissues from the follicular (F) or luteal phase (L) of Hanper sheep that were either consecutive monotocous (M) or polytocous were collected. Then, we performed transcriptome sequencing to screen for differentially expressed circRNAs (DE-circRNAs) and elucidate their function. In total, 4256 circRNA derived from 2184 host genes were identified in which 183 (146 were upregulated, while 37 were downregulated) were differentially expressed in monotocous sheep in the follicular phase versus polytocous sheep in the follicular phase (MF vs. PF). Moreover, 34 circRNAs (14 were upregulated, while 20 were downregulated) were differentially expressed in monotocous sheep in the luteal phase versus polytocous sheep in the luteal sheep (ML vs. PL). This was achieved through DE-circRNAs function enrichment annotation analysis by GESA, GO, and KEGG, which function through the EGF-EGFR-RAS-JNK, TGF-ß and thyroid hormone signaling pathway to affect the litter size of Hanper sheep in MF vs. PF and ML vs. PL. STEM results showed that MAPK signaling pathways play a key role in MF vs. PF and ML vs. PL. Through WGCNA analysis, AKT3 was a core gene in MF vs. PF and ML vs. PL. Moreover, competitive endogenous RNA (ceRNA) network analysis revealed the target binding sites for miRNA such as oar-miR-27a, oar-miR-16b, oar-miR-200a/b/c, oar-miR-181a, oar-miR-10a/b, and oar-miR-432 in the identified DE-cirRNAs.

10.
Reprod Domest Anim ; 56(4): 604-620, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33475207

RESUMO

Litter size is an important trait that determines the production efficiency of sheep bred for meat. Its detailed investigation can reveal the molecular mechanisms that control the fecundity of sheep and possibly accelerate the breeding process of new varieties of sheep that have high prolificacy. Long non-coding RNAs (lncRNAs) have proven to be an important factor in the regulation of follicular development. However, the mechanisms by which lncRNAs regulate litter size in sheep remain unclear. In the present study, ovarian tissues from the follicular (F) or luteal phase (L) of Hanper sheep that were either monotocous (M) or polytocous (P; FM, FP, LM and LP groups) were collected and sequenced to identify differentially expressed lncRNAs and predict their function. The results indicate that the number of up- and down-regulated lncRNAs in the follicular phase (FM vs. FP) was 95 and 111 and 109 and 49, respectively, in the luteal phase (LM vs. LP). The functional enrichment of the different lncRNAs coexpressed with mRNA was analysed. The results demonstrated that the KISS1-GnRH-LH/FSH-E2 and EGF-EGFR-RAS-PI3K signalling pathways promoted the initiation of the primordial period, follicular development and ovulation in the follicular phase (FM vs. FP). During the luteal phase (LM vs. LP), the production and development of the corpus luteum in ewes was influenced by the KITLG-KIT/FGF-FGFR/HGF-MET-RAS-ERK signalling pathway. STEM clustering functional enrichment analysis of the differentially expressed lncRNAs indicated that profile11 was principally enriched in the Cytokine-Jak-STAT, PDGF-PDGFR-PI3K and KITLG-KIT-RAS-ERK signalling pathways. By analysis of the differential expression of the lncRNAs and their expression in each group, lncRNAs Xist (loc101112291) and Gtl2 (loc101123329) were found to be highly expressed, suggesting that regulation of follicular development was mediated through methylation processes.


Assuntos
Tamanho da Ninhada de Vivíparos/genética , RNA Longo não Codificante/genética , Carneiro Doméstico/genética , Animais , Cruzamento , Feminino , Fertilidade/genética , Perfilação da Expressão Gênica , Ovário/metabolismo , Gravidez , RNA Mensageiro/genética , Transdução de Sinais
11.
Animals (Basel) ; 10(8)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731442

RESUMO

As the byproduct of finger millet, millet straw is a new forage resource of ruminants. The effect of the combined utilization of millet straw with corn straw on fattening lamb production is seldom reported. The purpose of this study was to investigate the effect of different proportions of millet straw instead of corn straw on the growth performance, blood metabolites, immune response, meat yield, and quality of fattening lamb. Sixty-three-month-old healthy Small-Tailed Han sheep crossbred rams with an average initial weight of 19.28 ± 2.95 kg were randomly divided into four groups, with three replicates in each group and five lambs in each replicate. The replacement ratio of millet straw of each group (Group I, II, III, IV) was 0%, 25%, 35%, 50% at the first stage (the first two months) and 0%, 20%, 28%, 40% in the second period (final two months), respectively. The experiment lasted 4 months 10 days of the pre-feeding period. The results indicated that the body weight gain and average daily gain of group Ⅱ were significantly higher than those of group Ⅰ and group Ⅳ (p < 0.05). The concentration of total protein in group Ⅳ was significantly increased compared to those of the other three groups at the second stage (p < 0.05), which proved that the protein synthesis metabolism capacity was improved with the addition of millet straw. The concentration of the plasma glutamic-oxalacetic transaminase and lactic dehydrogenase of lambs was significantly decreased in group Ⅱ (p < 0.05). The combination of millet straw and corn straw had no impact on the glucose, total cholesterol, and triglycerides metabolism (p > 0.05). There was no significant difference in the pre-slaughter weight, carcass weight, dressing percentage, loin-eye area, and GR value among the four groups (p > 0.05). Furthermore, the immune response and meat quality were not impacted by the different proportions of millet and corn forage diets. The results showed that the combined utilization of millet straw with corn straw could improve the blood biochemistry metabolism capability of fattening lambs. The replacement of 50% of corn straw with millet straw could improve the growth performance and be an application in fattening lamb production.

12.
Reprod Domest Anim ; 55(6): 737-746, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32181932

RESUMO

Previous studies have shown that four and a half LIM domain protein 2 (FHL2) plays an essential role in the regulation of follicular development in mammals. Although the FHL2 genes of human and mouse have been well characterized, the expression and location of FHL2 in ovary and the biological functions of FHL2 on granulosa cells (GCs) of ovine are still not clear. In this study, full-length complementary DNA (cDNA) of FHL2 from ovine follicular GCs was amplified by real-time PCR (RT-PCR). The expression and location of FHL2 in ovary and GCs of ovine were studied by immunohistochemistry and immunofluorescence, and the biological effects of FHL2 on the cell proliferation, cell apoptosis, cell cycles and expression level of related genes of ovine GCs were also explored by overexpression or knockdown of FHL2. The results indicated that FHL2 was expressed in ovine follicular GCs and the sequence of the FHL2 cDNA was consistent with that predicted in GenBank, which did not cause an amino acid change. According to the results, FHL2 was expressed in ovine ovary and mainly located in the cytoplasm and nucleus of GCs. In addition, overexpression of FHL2 significantly reduced the cell viability, promoted the cell apoptosis and decreased the percentage of G0/G1 and S phase cells. RT-PCR showed that overexpression of FHL2 significantly increased the mRNA expression level of Bax and decreased the expression of Bcl-2 and the Bcl-2/Bax mRNA ratio compared with the control group. Besides, the knockdown of FHL2 gene in ovine GCs significantly improved the cell viability, suppressed the cell apoptosis, decreased the mRNA expression level of Caspase-3 gene, increased the Bcl-2/Bax mRNA ratio and increased the percentage of S and G2/M phase cells. Our results suggest that FHL2 may play an important role in the biological functions of GCs in ovine.


Assuntos
Células da Granulosa/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Proteínas Musculares/metabolismo , Fatores de Transcrição/metabolismo , Animais , DNA Complementar , Feminino , Técnicas de Silenciamento de Genes , Proteínas com Homeodomínio LIM/genética , Proteínas Musculares/genética , Ovário , Ovinos , Fatores de Transcrição/genética
13.
Anim Biotechnol ; 31(2): 155-163, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30734624

RESUMO

Somatic cell nuclear transfer (SCNT) technology has been applied in the construction of disease model, production of transgenic animals, therapeutic cloning, and other fields. However, the cloning efficiency remains limited. In our study, to improve SCNT efficiency, brilliant cresyl blue (BCB) staining were chosen to select recipient oocytes. In addition, DNA methyltransferase inhibitor Zebularine (5 nmol/L) and histone deacetylase inhibitor Scriptaid (0.2 µmol/L) were jointly used to treat sheep donor cumulus cells and reconstructed embryo. Moreover, the expression levels of embryonic development-related genes (OCT4, SOX2, H19, IGF2 and Dnmt1) of reconstructed embryo were also detected. Using BCB + oocytes as recipient cell, donor cumulus cells and reconstructed embryos were treated with 5 nmol/L Zebularine and 0.2 µmol/L Scriptaid, the blastocyst rate in Zeb + SCR-SCNT group (28.25%) was significantly higher than SCNT (21.16%) (p < 0.05). Furthermore, results showed that expression levels of OCT4, SOX2, H19, IGF2 and Dnmt1 genes in Zeb + SCR-SCNT embryos were more similar to IVF embryos. Our study proved that 5 nmol/L Zebularine and 0.2 µmol/L Scriptaid treating with sheep donor cumulus cells and reconstructed embryos improved SCNT blastocyst rate and relieve the abnormal expression of embryonic developmental related genes.


Assuntos
Citidina/análogos & derivados , Embrião de Mamíferos/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Hidroxilaminas/farmacologia , Técnicas de Transferência Nuclear/veterinária , Quinolinas/farmacologia , Ovinos/embriologia , Animais , Clonagem de Organismos/métodos , Clonagem de Organismos/veterinária , Citidina/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia
14.
Int J Mol Sci ; 20(8)2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-31003470

RESUMO

The 12-oxo-phytodienoic acid reductases (OPRs), which belong to the old yellow enzyme (OYE) family, are flavin mononucleotide (FMN)-dependent oxidoreductases with critical functions in plants. Despite the clear characteristics of growth and development, as well as the defense responses in Arabidopsis, tomato, rice, and maize, the potential roles of OPRs in wheat are not fully understood. Here, forty-eight putative OPR genes were found and classified into five subfamilies, with 6 in sub. I, 4 in sub. II, 33 in sub. III, 3 in sub. IV, and 2 in sub. V. Similar gene structures and conserved protein motifs of TaOPRs in wheat were identified in the same subfamilies. An analysis of cis-acting elements in promoters revealed that the functions of OPRs in wheat were mostly related to growth, development, hormones, biotic, and abiotic stresses. A total of 14 wheat OPR genes were identified as tandem duplicated genes, while 37 OPR genes were segmentally duplicated genes. The expression patterns of TaOPRs were tissue- and stress-specific, and the expression of TaOPRs could be regulated or induced by phytohormones and various stresses. Therefore, there were multiple wheat OPR genes, classified into five subfamilies, with functional diversification and specific expression patterns, and to our knowledge, this was the first study to systematically investigate the wheat OPR gene family. The findings not only provide a scientific foundation for the comprehensive understanding of the wheat OPR gene family, but could also be helpful for screening more candidate genes and breeding new varieties of wheat, with a high yield and stress resistance.


Assuntos
Genoma de Planta/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Estresse Fisiológico/genética , Triticum/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Família Multigênica/genética , Oryza/genética , Filogenia , Reguladores de Crescimento de Plantas/genética , Regiões Promotoras Genéticas/genética , Triticum/enzimologia , Zea mays/metabolismo
15.
Reprod Fertil Dev ; 31(2): 357-365, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30196805

RESUMO

Aberrant DNA methylation reduces the developmental competence of mammalian somatic cell nuclear transfer (SCNT) embryos. Thus, hypomethylation-associated drugs are beneficial for improving reprogramming efficiency. Therefore, in the present study we investigated the effect of zebularine, a relatively novel DNA methyltransferase inhibitor, on the developmental potential of ovine SCNT embryos. First, reduced overall DNA methylation patterns and gene-specific DNA methylation levels at the promoter regions of pluripotency genes (octamer-binding transcription factor 4 (Oct4), SRY (sex determining region Y)-box 2 (Sox2) and Nanog) were found in zebularine-treated cumulus cells. In addition, the DNA methylation levels in SCNT embryos derived from zebularine-treated cumulus cells were significantly reduced at the 2-, 4-, 8-cell, and blastocyst stages compared with their corresponding controls (P<0.05). The blastocyst rate was significantly improved in SCNT embryos reconstructed by the cumulus donor cells treated with 5nM zebularine for 12h compared with the control group (25.4±1.6 vs 11.8±1.7%, P<0.05). Moreover, the abundance of Oct4 and Sox2 mRNA was significantly increased during the preimplantation stages after zebularine treatment (P<0.05). In conclusion, the results indicate that, in an ovine model, zebularine decreases overall DNA methylation levels in donor cumulus cells and reconstructed embryos, downregulates the DNA methylation profile in the promoter region of pluripotency genes in donor cells and ultimately elevates the expression of pluripotency genes in the reconstructed embryos, which can lead to improved development of SCNT embryos.


Assuntos
Reprogramação Celular/efeitos dos fármacos , Citidina/análogos & derivados , Metilação de DNA/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Metiltransferases/antagonistas & inibidores , Animais , Citidina/farmacologia , Feminino , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Técnicas de Transferência Nuclear , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Ovinos
16.
J Neuroimmunol ; 289: 152-61, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26616885

RESUMO

Interactions between the nervous system and immune system have been studied extensively. However, the mechanisms underlying the neural regulation of immune activity, particularly the neuroendocrine regulation of immunologic functions, remain elusive. In this review, we provide a comprehensive examination of current evidence on interactions between the immune system and hypothalamic oxytocin-secreting system. We highlight the fact that oxytocin may have significant effects in the body, beyond its classical functions in lactation and parturition. Similar to the hypothalamo-pituitary-adrenal axis, the oxytocin-secreting system closely interacts with classical immune system, integrating both neurochemical and immunologic signals in the central nervous system and in turn affects immunologic defense, homeostasis, and surveillance. Lastly, this review explores therapeutic potentials of oxytocin in treating immunologic disorders.


Assuntos
Encéfalo/metabolismo , Sistema Imunitário/fisiologia , Sistemas Neurossecretores/imunologia , Sistemas Neurossecretores/metabolismo , Ocitocina/metabolismo , Animais , Humanos
18.
Theriogenology ; 81(2): 332-9, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24182741

RESUMO

Although the success rate of sheep cloning remains extremely low, using a histone deacetylase (HDAC) inhibitor to increase histone acetylation in SCNT embryos has significantly enhanced developmental competence in several species. The objective was to determine whether HDAC inhibitors trichostatin A (TSA) and the novel inhibitor Scriptaid enhance cloning efficiency in sheep cumulus cell (passage 2) reconstructed embryos. In this study, 0.2 µmol/L Scriptaid yielded a high blastocyst development rate, almost twice that of the untreated group (25/103 [24.3%] vs. 12/101 [11.9%]; P < 0.05). Furthermore, 0.2 µmol/L Scriptaid was more effective than 0.05 µmol/L TSA in terms of the blastocyst percentage for cloned ovine embryos in vitro (17/66 [25.7%] vs. 11/65 [16.8%]; P < 0.05). Furthermore, treatment with Scriptaid increased acetylation (compared with the Control, P < 0.05) at lysine residue 12 of histone H4 (acH4K12) and lysine residue 9 of histone H3 (acH3K9) in one-, two-, four-, and eight-cell stages, as well as blastocyst stages, in cloned embryos. In conclusion, Scriptaid was more effective than TSA to enhance in vitro developmental competence in ovine SCNT embryos; furthermore, Scriptaid improved epigenetic status.


Assuntos
Embrião de Mamíferos/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Hidroxilaminas/farmacologia , Técnicas de Transferência Nuclear/veterinária , Quinolinas/farmacologia , Ovinos/embriologia , Animais
19.
ACS Appl Mater Interfaces ; 2(9): 2617-22, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20799710

RESUMO

Ni-doped TiO2 film catalysts were prepared by a plasma electrolytic oxidation (PEO) method and were mainly characterized by means of SEM, EDS, XRD, XPS, and DRS, respectively. The effects of Ni doping on the structure, composition and optical absorption property of the film catalysts were investigated along with their inherent relationships. The results show that the film catalyst is composed of anatase and rutile TiO2 with microporous structure. Doping Ni changes the phase composition and the lattice parameters (interplanar crystal spacing and cell volume) of the films. The optical absorption range of TiO2 film gradually expands and shifts to the red with increasing dosages. Both direct and indirect transition band gaps of the TiO2 films are deduced consequently. Moreover, the photocatalytic activity of the film catalysts for splitting Na2S+Na2SO3 solution into H2 is enhanced by doping with an appropriate amount of Ni. The as-prepared TiO2 film catalyst doping with 10 g/L of Ni(Ac)2 presents the highest photocatalytic reducing activity.


Assuntos
Membranas Artificiais , Níquel/química , Titânio/química , Catálise , Cristalização/métodos , Gases/química , Temperatura Alta , Luz , Teste de Materiais , Miniaturização , Níquel/efeitos da radiação , Oxirredução , Fotoquímica/métodos , Porosidade/efeitos da radiação , Titânio/efeitos da radiação
20.
Biomarkers ; 15(2): 128-34, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19839718

RESUMO

OBJECTIVE: We investigated whether or not there are autoantibodies for DKK1 (Dickkopf-1) in patients with non-small cell lung cancer (NSCLC) and whether this autoantibody can be used for cancer detection. METHODS: The levels of DKK1 autoantibodies were determined in 93 NSCLC patients and 87 healthy controls. RESULTS: We found that, in the sera, the presence of autoantibody against DKK1 was highly correlated with NSCLC. High anti-DKK1 autoantibody titres were found in the sera of NSCLC patients, whereas low or negative titres were found in the control group. The ROC curve results showed that autoantibody immunoassay exhibited 62% sensitivity and 84% specificity. The sensitivity for the detection of NSCLC in stage I also reach 64.3%. Furthermore, a combined ELISA assays for both DKK1 and autoantibody DKK1 increased sensitivity and classified 81.7% (76/93) of the NSCLC patients as positive, whereas only 13.8 % (12/87) of healthy volunteers were falsely diagnosed as positive. CONCLUSIONS: Our results suggest that the detection of circulating DKK1 autoantibody could potentially serve as a useful non-invasive marker for determining lung cancer status.


Assuntos
Autoanticorpos/sangue , Biomarcadores Tumorais/sangue , Carcinoma Pulmonar de Células não Pequenas/genética , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Neoplasias Pulmonares/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/imunologia , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Pulmonares/imunologia , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...